Prescriptive analytics : parameters of the model.
Ron Berman, Assistant Professor of Marketing at Wharton, in this third example of prescriptive analytics, discusses adding cost parameters to the prescriptive model to determine optimum profit, and introduces the marginal revenue equals marginal cost (MR=MC) principle.
Saved in:
Online Access: |
Streaming Video (via SAGE) |
---|---|
Other Authors: | |
Format: | Electronic Video |
Language: | English |
Published: |
[Place of publication not identified] :
Wharton,
2016.
|
Series: | Customer Analytics ;
22. |
Subjects: |
MARC
LEADER | 00000cgm a2200000Mi 4500 | ||
---|---|---|---|
001 | in00000113034 | ||
006 | m o c | ||
007 | vz czazuu | ||
007 | cr ||||||||||| | ||
008 | 200323r20162016xx --- fo o vleng d | ||
005 | 20231208151952.5 | ||
035 | |a (OCoLC)srm1149534054 | ||
040 | |a SGPBL |b eng |e rda |e pn |c SGPBL |d OCLCO |d OCLCF |d OCLCO | ||
020 | |a 9781529729238 |q (streaming video) | ||
020 | |a 1529729238 | ||
029 | 1 | |a AU@ |b 000067004165 | |
035 | |a (OCoLC)1149534054 | ||
041 | 0 | |j eng | |
050 | 4 | |a QA76.9.D343 |b P74 2016 | |
049 | |a GWRE | ||
245 | 0 | 0 | |a Prescriptive analytics : |b parameters of the model. |
264 | 1 | |a [Place of publication not identified] : |b Wharton, |c 2016. | |
300 | |a 1 online resource (1 video file (00:10:02)) : |b sound, colour. | ||
336 | |a two-dimensional moving image |b tdi |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
337 | |a video |b v |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Customer Analytics ; |v 22 | |
511 | 0 | |a Academic, Ron Berman PhD. | |
520 | 8 | |a Ron Berman, Assistant Professor of Marketing at Wharton, in this third example of prescriptive analytics, discusses adding cost parameters to the prescriptive model to determine optimum profit, and introduces the marginal revenue equals marginal cost (MR=MC) principle. | |
546 | |a Closed-captions in English. | ||
588 | |a Description based on XML content. | ||
650 | 0 | |a Data mining. | |
650 | 0 | |a Big data. | |
650 | 0 | |a Consumer behavior. | |
650 | 0 | |a Revenue. | |
650 | 7 | |a Big data. |2 fast |0 (OCoLC)fst01892965 | |
650 | 7 | |a Consumer behavior. |2 fast |0 (OCoLC)fst00876238 | |
650 | 7 | |a Data mining. |2 fast |0 (OCoLC)fst00887946 | |
650 | 7 | |a Revenue. |2 fast |0 (OCoLC)fst01096486 | |
700 | 1 | |a Berman, Ron, |e Academic. | |
830 | 0 | |a Customer Analytics ; |v 22. | |
856 | 4 | 0 | |u https://colorado.idm.oclc.org/login?url=https://methods.sagepub.com/video/prescriptive-analytics-parameters-of-the-model |z Streaming Video (via SAGE) |
915 | |a M | ||
956 | |a Sage Research Methods - Video | ||
956 | |b SAGE Research Methods Video: Market Research | ||
998 | |b New collection SAGE.vmktres | ||
994 | |a 92 |b COD | ||
999 | f | f | |s d11c769f-b4ce-4e40-b15d-eb8cb63a4786 |i 534c0f55-bf75-4de2-b1cb-2ac16b00d3b7 |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e QA76.9.D343 P74 2016 |h Library of Congress classification |i web |