Active learning to minimize the possible risk of future epidemics / KC Santosh, Suprim Nakarmi.

Future epidemics are inevitable, and it takes months and even years to collect fully annotated data. The sheer magnitude of data required for machine learning algorithms, spanning both shallow and deep structures, raises a fundamental question: how big data is big enough to effectively tackle future...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Authors: Santosh, K. C. (Author), Nakarmi, Suprim (Author)
Format: Electronic eBook
Language:English
Published: Singapore : Springer, [2023]
Series:SpringerBriefs in applied sciences and technology.
SpringerBriefs in applied sciences and technology. Computational intelligence.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000116333
006 m o d
007 cr |||||||||||
008 231125t20232023si a ob 000 0 eng d
005 20240423173743.6
019 |a 1410591900 
020 |a 9789819974429  |q electronic book 
020 |a 9819974429  |q electronic book 
020 |z 9789819974412  |q softcover 
020 |z 9819974410  |q softcover 
024 7 |a 10.1007/978-981-99-7442-9  |2 doi 
029 1 |a AU@  |b 000075519582 
035 |a (OCoLC)spr1410562029 
035 |a (OCoLC)1410562029  |z (OCoLC)1410591900 
037 |a spr978-981-99-7442-9 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OCLCO  |d GW5XE  |d EBLCP  |d YDX  |d OCLCO  |d OCLCQ  |d UKAHL  |d WAU  |d OCLCO 
049 |a GWRE 
050 4 |a RA652.2.D38 
100 1 |a Santosh, K. C.,  |e author.  |0 http://id.loc.gov/authorities/names/n2019017022 
245 1 0 |a Active learning to minimize the possible risk of future epidemics /  |c KC Santosh, Suprim Nakarmi. 
264 1 |a Singapore :  |b Springer,  |c [2023] 
264 4 |c ©2023 
300 |a 1 online resource (xvi, 96 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
336 |a still image  |b sti  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in applied sciences and technology,  |x 2191-5318 
490 1 |a SpringerBriefs in computational intelligence,  |x 2625-3712 
545 0 |a Professor K.C. Santosh is chair of the Department of Computer Science, University of South Dakota. Suprim Nakarmi is a research fellow for the Applied AI Research Lab, Department of Computer Science, University of South Dakota. 
504 |a Includes bibliographical references. 
505 0 |a 1. Introduction -- 2. Active learning: what, when, and where to deploy? -- 3. Active learning: review -- 4. Active learning: methodology -- 5. Active learning: validation -- 6. Case study #1: Is my cough sound Covid-19? -- 7. Case study #2: Reading/analyzing CT scans -- 8. Case study #3: Reading/analyzing chest X-rays -- 9. Summary and take-home messages. 
520 |a Future epidemics are inevitable, and it takes months and even years to collect fully annotated data. The sheer magnitude of data required for machine learning algorithms, spanning both shallow and deep structures, raises a fundamental question: how big data is big enough to effectively tackle future epidemics? In this context, active learning, often referred to as human or expert-in-the-loop learning, becomes imperative, enabling machines to commence learning from day one with minimal labeled data. In unsupervised learning, the focus shifts toward constructing advanced machine learning models like deep structured networks that autonomously learn over time, with human or expert intervention only when errors occur and for limited dataa process we term mentoring. In the context of Covid-19, this book explores the use of deep features to classify data into two clusters (0/1: Covid-19/non-Covid-19) across three distinct datasets: cough sound, Computed Tomography (CT) scan, and chest x-ray (CXR). Not to be confused, our primary objective is to provide a strong assertion on how active learning could potentially be used to predict disease from any upcoming epidemics. Upon request (education/training purpose), GitHub source codes are provided.--  |c Provided by publisher. 
588 0 |a Print version record. 
650 0 |a Machine learning.  |0 http://id.loc.gov/authorities/subjects/sh85079324 
650 0 |a Machine learning  |v Case studies. 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073 
650 0 |a Data mining  |v Case studies. 
650 0 |a Epidemiology  |x Data processing. 
650 0 |a Epidemiology  |x Data processing  |v Case studies. 
700 1 |a Nakarmi, Suprim,  |e author. 
776 0 8 |i Print version:  |a Santosh, K. C.  |t Active learning to minimize the possible risk of future epidemics.  |d Singapore : Springer, [2023]  |z 9789819974412  |w (OCoLC)1397313128 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-99-7442-9  |z Full Text (via Springer) 
830 0 |a SpringerBriefs in applied sciences and technology.  |0 http://id.loc.gov/authorities/names/no2011104880 
830 0 |a SpringerBriefs in applied sciences and technology.  |p Computational intelligence.  |0 http://id.loc.gov/authorities/names/no2012118951 
915 |a - 
944 |a MARS 
956 |a Springer e-books 
956 |b Springer Nature - Springer Intelligent Technologies and Robotics eBooks 2023 English International 
994 |a 92  |b COD 
998 |b WorldCat record encoding level change 
999 f f |s ed420092-da6c-400b-b4b3-95c42ee2e83e  |i c56d616b-5a86-4f1b-8e9f-b80515267ae5 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e RA652.2.D38   |h Library of Congress classification  |i web