Advanced methods of joint inversion and fusion of multiphysics data / Michael S. Zhdanov.

Different physical or geophysical methods provide information about distinctive physical properties of the objects, e.g., rock formations and mineralization. In many cases, this information is mutually complementary, which makes it natural for consideration in a joint inversion of the multiphysics d...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Zhdanov, Michael S. (Author)
Format: Electronic eBook
Language:English
Published: Singapore : Springer, [2023]
Series:Advances in geological science.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000131035
006 m o d
007 cr |||||||||||
008 240101s2023 si a ob 001 0 eng d
005 20240201205020.9
019 |a 1416746513 
020 |a 9789819967223  |q (electronic bk.) 
020 |a 9819967228  |q (electronic bk.) 
020 |z 9789819967216 
020 |z 981996721X 
024 7 |a 10.1007/978-981-99-6722-3  |2 doi 
029 1 |a AU@  |b 000075655774 
035 |a (OCoLC)spr1416220589 
035 |a (OCoLC)1416220589  |z (OCoLC)1416746513 
037 |a spr978-981-99-6722-3 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OCLCO  |d GW5XE  |d EBLCP  |d OCLCO 
049 |a GWRE 
050 4 |a QE606.3.I68 
100 1 |a Zhdanov, Michael S.,  |e author.  |0 http://id.loc.gov/authorities/names/n82017971  |1 http://isni.org/isni/0000000117763010 
245 1 0 |a Advanced methods of joint inversion and fusion of multiphysics data /  |c Michael S. Zhdanov. 
264 1 |a Singapore :  |b Springer,  |c [2023] 
264 4 |c ©2023 
300 |a 1 online resource (xvi, 369 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in geological science 
504 |a Includes bibliographical references and index. 
520 |a Different physical or geophysical methods provide information about distinctive physical properties of the objects, e.g., rock formations and mineralization. In many cases, this information is mutually complementary, which makes it natural for consideration in a joint inversion of the multiphysics data. Inversion of the observed data for a particular experiment is subject to considerable uncertainty and ambiguity. One productive approach to reducing uncertainty is to invert several types of data jointly. Nonuniqueness can also be reduced by incorporating additional information derived from available a priori knowledge about the target to reduce the search space for the solution. This additional information can be incorporated in the form of a joint inversion of multiphysics data. Generally established joint inversion methods, however, are inadequate for incorporating typical physical or geological complexity. For example, analytic, empirical, or statistical correlations between different physical properties may exist for only part of the model, and their specific form may be unknown. Features or structures that are present in the data of one physical method may not be present in the data generated by another physical method or may not be equally resolvable. This book presents and illustrates several advanced, new approaches to joint inversion and data fusion, which do not require a priori knowledge of specific empirical or statistical relationships between the different model parameters or their attributes. These approaches include the following novel methods, among others: 1) the Gramian method, which enforces the correlation between different parameters; 2) joint total variation functional or joint focusing stabilizers, e.g., minimum support and minimum gradient support constraints; 3) data fusion employing a joint minimum entropy stabilizer, which yields the simplest multiphysics solution that fits the multi-modal data. In addition, the book describes the principles of using artificial intelligence (AI) in solving multiphysics inverse problems. The book also presents in detail both the mathematical principles of these advanced approaches to joint inversion of multiphysics data and successful case histories of regional-scale and deposit-scale geophysical studies to illustrate their indicated advantages. 
505 0 |a Introduction to inversion theory -- Elements of probability theory -- Vector spaces of models and data -- Principles of regularization theory -- Linear inverse problems -- Probabilistic methods of inverse problem solution -- Gradient-type methods of non-linear inversion -- Joint inversion based on analytical and statistical relationships between different physical properties -- Joint inversion based on structural similarities -- Joint focusing inversion of multiphysics data -- Joint minimum entropy inversion -- Gramian method of generalized joint inversion -- Probabilistic approach to gramian inversion -- Simultaneous processing and fusion of multiphysics data and images -- Machine learning in the context of inversion theory -- Machine learning inversion of multiphysics data -- Modeling and inversion of potential field data -- Case histories of joint inversion of gravity and magnetic data. . 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed January 9, 2024). 
650 0 |a Inversions (Geology)  |x Mathematics. 
776 0 8 |c Original  |z 981996721X  |z 9789819967216  |w (OCoLC)1395179028 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-99-6722-3  |z Full Text (via Springer) 
830 0 |a Advances in geological science.  |0 http://id.loc.gov/authorities/names/no2021057981 
915 |a - 
944 |a MARS 
956 |a Springer e-books 
956 |b Springer Earth and Environmental Science eBooks 2023 English+International 
994 |a 92  |b COD 
998 |b WorldCat record encoding level change 
999 f f |s 41f69905-7faa-41c3-9e6d-624199cde00d  |i f2e41db5-1d45-4107-9fa2-42ca497ab82f 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QE606.3.I68   |h Library of Congress classification  |i web