Graph Database and Graph Computing for Power System Analysis

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Dai, Renchang
Other Authors: Liu, Guangyi
Format: Electronic eBook
Language:English
Published: Newark : John Wiley & Sons, Incorporated, 2023.
Series:IEEE Press Series on Power and Energy Systems Series.
Table of Contents:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • About the Authors
  • Preface
  • Acknowledgments
  • Part I Theory and Approaches
  • Chapter 1 Introduction
  • 1.1 Power System Analysis
  • 1.1.1 Power Flow Calculation
  • 1.1.2 State Estimation
  • 1.1.3 Contingency Analysis
  • 1.1.4 Security-Constrained Automatic Generation Control
  • 1.1.5 Security-Constrained ED
  • 1.1.6 Electromechanical Transient Simulation
  • 1.1.7 Photovoltaic Power Generation Forecast
  • 1.2 Mathematical Model
  • 1.2.1 Direct Methods of Solving Large-Scale Linear Equations
  • 1.2.2 Iterative Methods of Solving Large-Scale Linear Equations
  • 1.2.3 High-Dimensional Differential Equations
  • 1.2.4 Mixed Integer-Programming Problems
  • 1.3 Graph Computing
  • 1.3.1 Graph Modeling Basics
  • 1.3.2 Graph Parallel Computing
  • References
  • Chapter 2 Graph Database
  • 2.1 Database Management Systems History
  • 2.2 Graph Database Theory and Method
  • 2.2.1 Graph Database Principle and Concept
  • 2.2.1.1 Defining a Graph Schema
  • 2.2.1.2 Creating a Loading Job
  • 2.2.1.3 Graph Query Language
  • 2.2.2 System Architecture
  • 2.2.3 Graph Computing Platform
  • 2.3 Graph Database Operations and Performance
  • 2.3.1 Graph Database Management System
  • 2.3.1.1 Parallel Processing by Map Reduce
  • 2.3.1.2 Graph Partition
  • 2.3.2 Graph Database Performance
  • References
  • Chapter 3 Graph Parallel Computing
  • 3.1 Graph Parallel Computing Mechanism
  • 3.2 Graph Nodal Parallel Computing
  • 3.3 Graph Hierarchical Parallel Computing
  • 3.3.1 Symbolic Factorization
  • 3.3.2 Elimination Tree
  • 3.3.3 Node Partition
  • 3.3.4 Numerical Factorization
  • 3.3.5 Forward and Backward Substitution
  • References
  • Chapter 4 Large-Scale. Algebraic Equations
  • 4.1 Iterative Methods of Solving Nonlinear Equations
  • 4.1.1 Gauss-Seidel Method
  • 4.1.2 PageRank Algorithm
  • 4.1.2.1 PageRank Algorithm Mechanism
  • 4.1.2.2 Iterative Method
  • 4.1.2.3 Algebraic Method
  • 4.1.2.4 Convergence Analysis
  • 4.1.3 Newton-Raphson Method
  • 4.2 Direct Methods of Solving Linear Equations
  • 4.2.1 Introduction
  • 4.2.2 Basic Concepts
  • 4.2.2.1 Data Structures of Sparse Matrix
  • 4.2.2.2 Matrices and Graphs
  • 4.2.3 Historical Development
  • 4.2.4 Direct Methods
  • 4.2.4.1 Solving Triangular Systems
  • 4.2.4.2 Symbolic Factorization
  • 4.2.4.3 Fill-Reducing Ordering
  • 4.3 Indirect Methods of Solving Linear Equations
  • 4.3.1 Stationary Methods
  • 4.3.1.1 Jacobi Method
  • 4.3.1.2 Gauss-Seidel Method
  • 4.3.1.3 SOR Method
  • 4.3.1.4 SSOR Method
  • 4.3.2 Nonstationary Methods
  • 4.3.2.1 CG Method
  • 4.3.2.2 GMRES
  • 4.3.2.3 BCG (bi-CG)
  • References
  • Chapter 5 High-Dimensional Differential Equations
  • 5.1 Integration Methods
  • 5.1.1 An Overview of Integration Methods and their Accuracy
  • 5.1.1.1 One-Step Methods
  • 5.1.1.2 Linear Multistep Methods
  • 5.1.2 Integration Methods for Power System Transient Simulations
  • 5.1.3 Transient Analysis Accuracy