Advanced Analytics for Predicting Spatiotemporal Agricultural Outcomes / Tara A Ippolito.

Agriculture supports economies, food security, and the livelihoods of diverse communities around the world. As a key component of many of the United Nations sustainable development goals, ensuring the success of agriculture and reducing its impact on the environment are critical to global progress....

Full description

Saved in:
Bibliographic Details
Online Access: Connect to online resource
Main Author: Ippolito, Tara A. (Author)
Format: Thesis Electronic eBook
Language:English
Published: Ann Arbor : ProQuest Dissertations & Theses, 2023.
Subjects:

MARC

LEADER 00000nam a22000003i 4500
001 in00000155005
006 m d
007 cr un
008 240116s2023 miu|||||sm |||| ||eng d
005 20240903194425.8
020 |a 9798380166720 
035 |a (MiAaPQD)AAI30573531 
035 |a AAI30573531 
040 |a MiAaPQD  |b eng  |e rda  |c MiAaPQD 
100 1 |a Ippolito, Tara A.,  |e author.  |0 (orcid)0000-0003-0618-9249 
245 1 0 |a Advanced Analytics for Predicting Spatiotemporal Agricultural Outcomes /  |c Tara A Ippolito. 
264 1 |a Ann Arbor :  |b ProQuest Dissertations & Theses,  |c 2023. 
300 |a 1 electronic resource (175 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a This item is not available from ProQuest Dissertations & Theses. 
590 |a School code: 0051 
500 |a Source: Dissertations Abstracts International, Volume: 85-03, Section: B. 
500 |a Advisors: Neff, Jason Committee members: Mehrabi, Zia; Thomas, Evan; Ciampitti, Ignacio; Herrick, Jeffrey. 
502 |b Ph.D.  |c University of Colorado at Boulder  |d 2023. 
520 |a Agriculture supports economies, food security, and the livelihoods of diverse communities around the world. As a key component of many of the United Nations sustainable development goals, ensuring the success of agriculture and reducing its impact on the environment are critical to global progress. While increasing global agricultural production is necessary to meet rising population and lifestyle changes, many modern management practices have contributed to degradation, declines in soil fertility, losses of natural habitat, and increases in global greenhouse gas emissions. Improving productivity and reducing the environmental impact of agricultural systems are challenging to balance, particularly as climate change threatens global agriculture and constrains adaptive capacity. Balancing productivity and sustainability is also dependent on the scaledependent spatiotemporal heterogeneity of agroecosystems which drives agricultural outcomes. In this dissertation, I investigate sustainability and productivity outcomes of diverse agricultural systems and explore the ways that biophysical conditions stratify outcomes across landscapes. Using a wide variety of remotely-sensed, modeled, machine-learning predicted and field-measured data, I use advanced analytical approaches to predict agricultural outcomes as a result of unique soil, climate, and plant characteristics. To investigate sustainability outcomes, I predict changes in soil organic carbon across Europe as a result of differing management practices and explore how soil and climate conditions determine these responses. In Kenya, I predict the productivity outcomes of rangeland vegetation in order to spatiotemporally characterize the landscape's forage resources for livestock grazing and identify drivers of forage availability during periods of low productivity. Finally, in order to simultaneously investigate sustainability and productivity outcomes, I build Land Capability Classifications for the Dosso region of Niger in order to inform land-use planning efforts and identify areas which are the most suitable for sustainable agricultural uses. From these analyses, I identify management opportunities and limitations with respect to a variety of goals such as optimizing land use, improving soil carbon storage, and reduction of drought-related losses. The frameworks and methodologies developed in this dissertation can be readily applied in any location, at any scale, to develop actionable insights for agricultural systems. 
546 |a English 
650 0 |a Agriculture.  |0 http://id.loc.gov/authorities/subjects/sh85002415 
650 0 |a Environmental sciences.  |0 http://id.loc.gov/authorities/subjects/sh92004048 
650 0 |a Human ecology  |x Study and teaching.  |0 http://id.loc.gov/authorities/subjects/sh85062861 
653 |a Applied science 
653 |a Machine learning 
653 |a Management practices 
653 |a Sustainable development 
653 |a Agricultural systems 
655 7 |a Theses  |x CU Boulder  |x Environmental Studies.  |2 local 
700 1 |a Neff, Jason,  |e degree supervisor.  |0 http://id.loc.gov/authorities/names/no2022095254 
773 0 |t Dissertations Abstracts International  |g 85-03B. 
791 |a Ph.D. 
792 |a 2023 
856 4 0 |z Connect to online resource  |u https://colorado.idm.oclc.org/login?url=http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:30573531 
944 |a MARS - RDA ENRICHED 
956 |a ETD 
999 f f |s 185c9411-9bce-4b02-a49f-c854e8c669f5  |i 94282ccb-95bf-4feb-a217-bb615cde43b4 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |i web