Social networks with rich edge semantics / Quan Zheng, David Skillicorn.

"Social Networks with Rich Edge Semantics introduces a new mechanism for representing social networks in which pairwise relationships can be drawn from a range of realistic possibilities, including different types of relationships, different strengths in the directions of a pair, positive and n...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via EBSCO)
Main Author: Zheng, Quan (Telecommunications engineer) (Author)
Other Authors: Skillicorn, David B.
Format: Electronic eBook
Language:English
Published: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017]
Edition:First edition.
Series:Chapman & Hall/CRC data mining and knowledge discovery series.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000196831
006 m o d
007 cr |||||||||||
008 170810s2017 flua ob 001 0 eng d
005 20240604165929.4
019 |a 1001542219  |a 1001808982  |a 1015205372  |a 1289903866 
020 |a 9781315390628  |q (e-book ;  |q PDF) 
020 |a 1315390620 
020 |a 9781315390604 
020 |a 1315390604 
020 |a 1315390612 
020 |a 9781315390611 
020 |a 9781138032439  |q (electronic bk.) 
020 |a 1138032433  |q (electronic bk.) 
020 |a 9781315390598  |q (e-book ;  |q Mobi) 
020 |a 1315390590 
024 7 |a 10.1201/9781315390628  |2 doi 
029 1 |a AU@  |b 000065649291 
029 1 |a AU@  |b 000066532118 
029 1 |a AU@  |b 000068941686 
029 1 |a CHBIS  |b 011431565 
029 1 |a CHNEW  |b 000974216 
029 1 |a CHNEW  |b 001057455 
029 1 |a CHVBK  |b 567520277 
029 1 |a CHVBK  |b 569638232 
035 |a (OCoLC)eboa993984779 
035 |a (OCoLC)993984779  |z (OCoLC)1001542219  |z (OCoLC)1001808982  |z (OCoLC)1015205372  |z (OCoLC)1289903866 
037 |a eboa1578904 
040 |a CRCPR  |b eng  |e rda  |e pn  |c CRCPR  |d IDEBK  |d EBLCP  |d NLE  |d OCLCO  |d N$T  |d CRCPR  |d OCLCF  |d UAB  |d OCLCQ  |d VLB  |d YDX  |d MERER  |d OCLCQ  |d ERL  |d STF  |d OCLCQ  |d U3W  |d INT  |d MERUC  |d WYU  |d OCLCQ  |d TYFRS  |d OCLCQ  |d OAPEN  |d UKAHL  |d OCLCO  |d UKKNU  |d C6I  |d ELW  |d OCL  |d OCLCQ  |d OCLCO  |d ZCU  |d OCLCA  |d N$T  |d OIP  |d OCLCQ  |d W4K  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL  |d OCLCQ 
049 |a GWRE 
050 4 |a HM741 
050 4 |a TK5105.88815  |b .Z54 2017 
100 1 |a Zheng, Quan  |c (Telecommunications engineer),  |e author.  |0 http://id.loc.gov/authorities/names/n2017059548  |1 https://id.oclc.org/worldcat/entity/E39PCjFkGd3qYtgqWGq7TtrGtq 
245 1 0 |a Social networks with rich edge semantics /  |c Quan Zheng, David Skillicorn. 
250 |a First edition. 
264 1 |a Boca Raton, FL :  |b CRC Press, Taylor & Francis Group,  |c [2017] 
300 |a 1 online resource (xx, 210 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC data mining and knowledge discovery series 
520 2 |a "Social Networks with Rich Edge Semantics introduces a new mechanism for representing social networks in which pairwise relationships can be drawn from a range of realistic possibilities, including different types of relationships, different strengths in the directions of a pair, positive and negative relationships, and relationships whose intensities change with time. For each possibility, the book shows how to model the social network using spectral embedding. It also shows how to compose the techniques so that multiple edge semantics can be modeled together, and the modeling techniques are then applied to a range of datasets. Features introduces the reader to difficulties with current social network analysis, and the need for richer representations of relationships among nodes, including accounting for intensity, direction, type, positive/negative, and changing intensities over time presents a novel mechanism to allow social networks with qualitatively different kinds of relationships to be described and analyzed includes extensions to the important technique of spectral embedding, shows that they are mathematically well motivated and proves that their results are appropriates hows how to exploit embeddings to understand structures within social networks, including subgroups, positional significance, link or edge prediction, consistency of role in different contexts, and net flow of properties through a node illustrates the use of the approach for real-world problems for online social networks, criminal and drug smuggling networks, and networks where the nodes are themselves groups suitable for researchers and students in social network research, data science, statistical learning, and related areas, this book will help to provide a deeper understanding of real-world social networks."--Provided by publisher 
505 0 |a Cover ; Half title ; Published titles ; Title ; Copyright ; Contents ; Preface ; List of figures ; List of tables ; Glossary ; Chapter 1 introduction; 1.1 what is a social network. 
505 8 |a 1.2 multiple aspects of relationships 1.3 formally representing social networks ; Chapter 2 the core model. 
505 8 |a 2.1 representing networks to understand their structures 2.2 building layered models ; 2.3 summary ; Chapter 3 background; 3.1 graph theory background. 
505 8 |a 3.2 spectral graph theory 3.2.1 the unnormalized graph laplacian ; 3.2.2 the normalized graph laplacians ; 3.3 spectral pipeline. 
505 8 |a 3.4 spectral approaches to clustering 3.4.1 undirected spectral clustering algorithms ; 3.4.2 which laplacian clustering should be used. 
542 1 |f This work is licensed under a Creative Commons license  |u https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode 
504 |a Includes bibliographical references and index. 
650 0 |a Social networks  |x Mathematical models. 
650 0 |a Semantic Web.  |0 http://id.loc.gov/authorities/subjects/sh2002000569 
650 0 |a Social media.  |0 http://id.loc.gov/authorities/subjects/sh2006007023 
650 7 |a Social media.  |2 fast 
650 7 |a Semantic Web.  |2 fast 
650 7 |a Social networks  |x Mathematical models.  |2 fast 
700 1 |a Skillicorn, David B.  |0 http://id.loc.gov/authorities/names/n86036061  |1 http://isni.org/isni/0000000116234897 
758 |i has work:  |a Social networks with rich edge semantics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGCxPkkjhw8W86hjVC7Brq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9781315390628  |z 9781315390611 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1578904  |z Full Text (via EBSCO) 
830 0 |a Chapman & Hall/CRC data mining and knowledge discovery series.  |0 http://id.loc.gov/authorities/names/no2007060486 
915 |a - 
944 |a MARS - RDA ENRICHED 
956 |a EBSCO Open Access 
956 |b EBSCO eBook Open Access (OA) Collection 
994 |a 92  |b COD 
998 |b New collection netlibrary.e001mww 
999 f f |s 529280fc-9253-48ca-81b5-3af32db351ad  |i b4ccea2e-2138-4c57-93fa-66768997e1c0 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e HM741 .Z54 2017  |h Library of Congress classification  |i web