The Building Blocks of IoT Analytics : Internet-Of-Things Analytics.

Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizati...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via EBSCO)
Main Author: Soldatos, John
Format: Electronic eBook
Language:English
Published: Aalborg : River Publishers, 2016.
Series:River Publishers Series in Signal, Image and Speech Processing Ser.
Subjects:
Table of Contents:
  • Front Cover
  • Half Title Page
  • RIVER PUBLISHERS SERIES IN SIGNAL, IMAGE AND SPEECH PROCESSING
  • Full Title Page
  • Building Blocks for IoT AnalyticsI nternet-of-Things Analytics
  • Copyright Page
  • Contents
  • Preface
  • List of Contributors
  • List of Figures
  • List of Tables
  • List of Abbreviations
  • PART I IoT Analytics Enablers
  • Chapter 1
  • Introducing IoT Analytics
  • 1.1 Introduction
  • 1.2 IoT Data and BigData
  • 1.3 Challenges of IoT Analytics Applications
  • 1.4 IoT Analytics Lifecycle and Techniques
  • 1.5 Conclusions
  • References
  • Chapter 2
  • IoT, Cloud and BigData Integration for IoT Analytics
  • 2.1 Introduction
  • 2.2 Cloud-based IoT Platform
  • 2.2.1 IaaS, PaaS and SaaS Paradigms
  • 2.2.2 Requirements of IoT BigData Analytics Platform
  • 2.2.3 Functional Architecture
  • 2.3 Data Analytics for the IoT
  • 2.3.1 Characteristics of IoT Generated Data
  • 2.3.2 Data Analytic Techniques and Technologies
  • 2.4 Data Collection Using Low-power, Long-range Radios
  • 2.4.1 Architecture and Deployment
  • 2.4.2 Low-cost LoRa Implementation
  • 2.5 WAZIUP Software Platform
  • 2.5.1 Main Challenges
  • 2.5.2 PaaS for IoT
  • 2.5.3 Architecture
  • 2.5.4 Deployment
  • 2.6 iKaaS Software Platform
  • 2.6.1 Service Orchestration and Resources Provisioning
  • 2.6.2 Advanced Data Processing and Analytics
  • 2.6.3 Service Composition and Decomposition
  • 2.6.4 Migration and Portability in Multi-cloud Environment
  • 2.6.5 Cost Function of Service Migration
  • 2.6.6 Dynamic Selection of Devices in Multi-cloud Environment
  • Acknowledgement
  • References
  • Chapter 3
  • Searching the Internet of Things
  • 3.1 Introduction
  • 3.2 A Search Architecture for Social and Physical Sensors
  • 3.2.1 Search engine for MultimediA enviRonment generated contenT (SMART)
  • 3.2.2 Challenges in Building an IoT Search Engine
  • 3.3 Local Event Retrieval.
  • 3.3.1 Social Sensors for Local Event Retrieval
  • 3.3.2 Problem Formulation
  • 3.3.3 A Framework for Event Retrieval
  • 3.3.4 Summary
  • 3.4 Using Sensor Metadata Streams to Identify Topics of Local Events in the City
  • 3.4.1 Definition of Event Topic Identification Problem
  • 3.4.2 Sensor Data Collection
  • 3.4.3 Event Pooling and Annotation
  • 3.4.4 Learning Event Topics
  • 3.4.5 Experiments
  • 3.4.6 Summary
  • 3.5 Venue Recommendation
  • 3.5.1 Modelling User Preferences
  • 3.5.2 Venue-dependent Evidence
  • 3.5.3 Context-Aware Venue Recommendations
  • 3.5.4 Summary
  • 3.6 Conclusions
  • Acknowledgements
  • References
  • Chapter 4
  • Development Tools for IoT Analytics Applications
  • 4.1 Introduction
  • 4.2 RelatedWork
  • 4.3 The VITAL Architecture for IoT Analytics Applications
  • 4.4 VITAL Development Environment
  • 4.4.1 Overview
  • 4.4.2 VITAL Nodes
  • 4.4.2.1 PPI nodes
  • 4.4.2.2 System nodes
  • 4.4.2.3 Services nodes
  • 4.4.2.4 Sensors nodes
  • 4.4.2.5 Observations nodes
  • 4.4.2.6 DMS nodes
  • 4.4.2.7 Query systems
  • 4.4.2.8 Query services
  • 4.4.2.9 Query sensors
  • 4.4.2.10 Query observations
  • 4.4.2.11 Discovery nodes
  • 4.4.2.12 Discover systems nodes
  • 4.4.2.13 Discover services nodes
  • 4.4.2.14 Discover sensors nodes
  • 4.4.2.15 Filtering nodes
  • 4.4.2.16 Threshold nodes
  • 4.4.2.17 Resample nodes
  • 4.5 Development Examples
  • 4.5.1 Example #1: Predict the Footfall!
  • 4.5.2 Example #2: Find a Bike!
  • 4.6 Conclusions
  • Acknowledgements
  • References
  • Chapter 5
  • An Open Source Framework for IoT Analytics as a Service
  • 5.1 Introduction
  • 5.2 Architecture for IoT Analytics-as-a-Service
  • 5.2.1 Properties of Sensing-as-a-Service Infrastructure
  • 5.2.2 Service Delivery Architecture
  • 5.2.3 Service Delivery Concept
  • 5.3 Sensing-as-a-Service Infrastructure Anatomy
  • 5.3.1 Lifecycle of a Sensing-as-a-Service Instance.
  • 5.3.2 Interactions between OpenIoT Modules
  • 5.4 Scheduling, Metering and Service Delivery
  • 5.4.1 Scheduler
  • 5.4.2 Service Delivery & Utility Manager
  • 5.5 Sensing-as-a-Service Example
  • 5.5.1 Data Capturing and Flow Description
  • 5.5.2 Semantic Annotation of Sensor Data
  • 5.5.3 Registering Sensors to LSM
  • 5.5.4 Pushing Data to LSM
  • 5.5.5 Service Definition and Deployment Using OpenIoT Tools
  • 5.5.6 Visualizing the Request
  • 5.6 From Sensing-as-a-Service to IoT-Analytics as-a-Service
  • 5.7 Conclusions
  • Acknowledgements
  • References
  • Chapter 6
  • A Review of Tools for IoT Semantics and Data Streaming Analytics
  • 6.1 Introduction
  • 6.2 RelatedWork
  • 6.2.1 Linking Data
  • 6.2.2 Real-time & Linked Stream Processing
  • 6.2.3 Logic
  • 6.2.4 Machine Learning
  • 6.2.5 Semantic-based Distributed Reasoning
  • 6.2.6 Cross-Domain Recommender Systems
  • 6.2.7 Limitations of ExistingWork
  • 6.3 Semantic Analytics
  • 6.3.1 Architecture towards the Linked Open Reasoning
  • 6.3.2 TheWorkflow to Process IoT Data
  • 6.3.3 Sensor-based Linked Open Rules (S-LOR)
  • 6.4 Tools & Platforms
  • 6.4.1 Semantic Modeling and Validation Tools
  • 6.4.2 Data Reasoning
  • 6.5 A Practical Use Case
  • 6.6 Conclusions
  • Acknowledgement
  • References
  • PART II IoT Analytics Applications and Case Studies
  • Chapter 7
  • Data Analytics in Smart Buildings
  • 7.1 Introduction
  • 7.2 Addressing Energy Efficiency in Smart Buildings
  • 7.3 RelatedWork
  • 7.4 A Proposal of General Architecture for Management Systems of Smart Buildings
  • 7.4.1 Data Collection Layer
  • 7.4.2 Data Processing Layer
  • 7.4.3 Services Layer
  • 7.5 IoT-based Information Management System for Energy Efficiency in Smart Buildings
  • 7.5.1 Indoor Localization Problem
  • 7.5.2 Building Energy Consumption Prediction
  • 7.5.3 Optimization Problem
  • 7.5.4 User Involvement in the System Operation.
  • 7.6 Evaluation and Results
  • 7.6.1 Scenario of Experimentation
  • 7.6.2 Evaluation and Indoor Localization Mechanism
  • 7.6.3 Evaluation. Energy Consumption Prediction and Optimization
  • 7.6.4 Evaluation. User Involvement
  • 7.7 Conclusions and FutureWork
  • Acknowledgments
  • References
  • Chapter 8
  • Internet-of-Things Analytics for Smart Cities
  • 8.1 Introduction
  • 8.2 Cloud-based IoT Analytics
  • 8.2.1 State of the Art
  • 8.3 Cloud-based City Platform
  • 8.3.1 Use Case of Cloud-based Data Analytics
  • 8.4 New Challenges towards Edge-based Solutions
  • 8.5 Edge-based IoT Analytics
  • 8.5.1 State of the Art
  • 8.5.2 Edge-based City Platform
  • 8.5.3 Workflow
  • 8.5.4 Task and Topology
  • 8.5.5 IoT-friendly Interfaces
  • 8.6 Use Case of Edge-based Data Analytics
  • 8.6.1 Overview of Crowd Mobility Analytics
  • 8.6.2 Processing Tasks and Topology of Crowd Mobility Analytics
  • 8.7 Conclusion and FutureWork
  • References
  • Chapter 9
  • IoT Analytics: From Data Collection to Deployment and Operationalization
  • 9.1 Operationalizing Data Analytics Using the VITAL Platform
  • 9.1.1 IoT Data Analysis
  • 9.1.2 IoT Data Deployment and Reuse
  • 9.2 Knowledge Extraction and IoT Analytics Operationalization
  • 9.3 A Practical Example based on Footfall Data
  • Acknowledgement
  • References
  • Chapter 10
  • Ethical IoT: A SustainableWay Forward
  • 10.1 Introduction
  • 10.2 From IoT to a Data Driven Economy and Society
  • 10.3 Way Forward with IoT
  • 10.4 Conclusions
  • References
  • Epilogue
  • Index
  • About the Editor
  • About the Authors
  • Back Cover.