Solid-state metal additive manufacturing : physics, processes, mechanical properties, and applications / edited by Hang Z. Yu, Nihan Tuncer, and Zhili Feng.
Solid-State Metal Additive Manufacturing Timely summary of state-of-the-art solid-state metal 3D printing technologies, focusing on fundamental processing science and industrial applications Solid-State Metal Additive Manufacturing: Physics, Processes, Mechanical Properties, and Applications provide...
Saved in:
Online Access: |
Full Text (via Wiley) |
---|---|
Other Authors: | , , |
Format: | eBook |
Language: | English |
Published: |
Weinheim, Germany :
Wiley-VCH,
2024.
|
Subjects: |
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | in00000217854 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 240523s2024 gw o 000 0 eng d | ||
005 | 20240708145622.0 | ||
020 | |a 9783527839353 |q (electronic bk.) | ||
020 | |a 3527839356 |q (electronic bk.) | ||
020 | |z 9783527350933 | ||
024 | 7 | |a 10.1002/9783527839353 |2 doi | |
035 | |a (OCoLC)wol1435480339 | ||
035 | |a (OCoLC)1435480339 | ||
040 | |a DG1 |b eng |e rda |e pn |c DG1 |d OCLCO | ||
049 | |a GWRE | ||
050 | 4 | |a TS183.25 | |
245 | 0 | 0 | |a Solid-state metal additive manufacturing : |b physics, processes, mechanical properties, and applications / |c edited by Hang Z. Yu, Nihan Tuncer, and Zhili Feng. |
264 | 1 | |a Weinheim, Germany : |b Wiley-VCH, |c 2024. | |
300 | |a 1 online resource (416 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a volume |b nc |2 rdacarrier | ||
505 | 0 | |8 1.1\x |a Preface -- Part I Introduction -- 1 Introduction and Overview 3 Hang Z. Yu, Nihan Tuncer, and Zhili Feng -- 1.1 Overview and History of Metal Additive Manufacturing -- 1.2 Liquid-State Bonding Versus Solid-State Bonding -- 1.2.1 Liquid-State Bonding -- 1.2.2 Solid-State Bonding -- 1.3 Nonbeam-Based, Solid-State Metal Additive Manufacturing -- 1.3.1 Deformation-Based Metal Additive Manufacturing -- 1.3.2 Sintering-Based Metal Additive Manufacturing -- 1.4 Additive Manufacturing Categorization Based on the Relationship Between Shape Forming and Consolidation -- 1.5 Organization of the Book -- References -- Part II Cold Spray Additive Manufacturing -- 2 Impact-Induced Bonding: Physical Processes and Bonding Mechanisms 21 David Veysset and Mostafa Hassani -- 2.1 Introduction -- 2.2 Fundamentals of Impact Bonding -- 2.2.1 Plate Impacts and Explosive Welding -- 2.2.1.1 The Shock Equations of State -- 2.2.1.2 Limiting Conditions for Explosive Welding -- 2.2.2 Laser Impact Bonding -- 2.3 Bonding Mechanisms in Cold Spray -- 2.3.1 Proposed Mechanisms -- 2.3.1.1 The Role of Jetting and Impact Pressure in Particle Bonding -- 2.3.1.2 The Limiting Case of Impact Melting -- 2.3.1.3 Adiabatic Shear Instability -- 2.3.1.4 Dissimilar Materials Impact -- 2.3.2 Influence of Particle Characteristics -- 2.3.2.1 Particle Temperature -- 2.3.2.2 Particle Size -- 2.3.2.3 Surface Oxide and Hydroxide Effects -- References -- 3 Microstructures and Microstructural Evolution in Cold-Sprayed Materials 49 Luke N. Brewer and Lorena I. Perez-Andrade -- 3.1 Introduction -- 3.2 Defect Structures -- 3.2.1 Vacancies -- 3.2.2 Dislocation Structure -- 3.2.3 Grain Structure -- 3.2.4 Precipitate Structure -- 3.2.5 Porosity -- 3.3 Microstructural Evolution of Thermally Treated Cold-Sprayed Materials -- 3.3.1 Recovery, Recrystallization, and Grain Growth -- 3.3.2 Precipitation -- 3.3.3 Heat Treatment of Feedstock Powders and its Impact on Microstructure -- 3.4 Conclusions -- Acknowledgements -- References -- 4 Mechanical Properties of Cold Spray Deposits 75 Sara Bagherifard and Mario Guagliano -- 4.1 Introduction -- 4.2 Mechanical Properties -- 4.2.1 Adhesive Strength -- 4.2.1.1 Adhesive Strength Test Methods -- 4.2.1.2 The Effect of Process Parameters on Adhesive Strength -- 4.2.1.3 The effect of Pre-/Post-treatments on Adhesive Strength -- 4.2.2 Cohesive Strength -- 4.2.2.1 Cohesive Strength Test methods -- 4.2.2.2 Cohesive Strength Under Static Loading -- 4.2.2.3 Cohesive Strength Under Fatigue Loading -- 4.2.2.4 Anisotropy in Cohesive Strength -- 4.2.3 Summary and Future Perspectives -- References -- 5 Cold Spray in Practical and Potential Applications 101 Jingjie Wei, Yong He, Phuong Vo, and Yu Zou -- 5.1 Introduction -- 5.1.1 The Cold Spray Process -- 5.1.2 Cold Spray Additive Manufacturing (CSAM) -- 5.2 Materials -- 5.2.1 Cu and Cu Alloys -- 5.2.1.1 2Cu-Ga and Cu-In-Ga -- 5.2.1.2 Cu-Sn -- 5.2.1.3 Cu-W -- 5.2.2 Al and Al Alloys -- 5.2.3 Ni and Ni Alloys -- 5.2.4 Stainless Steels -- 5.2.5 Body Center Cubic (BCC) Metals -- 5.2.5.1 Tantalum -- 5.2.5.2 Niobium -- 5.2.6 Hexagonal Close-Packed (HCP) Metals -- 5.2.6.1 Titanium -- 5.2.6.2 Magnesium -- 5.2.7 Metal Mixes and Metal Matrix Composite (MMC) -- 5.2.7.1 Metal Mixes -- 5.2.7.2 Metal Matrix Composite -- 5.2.8 Multicomponent and High Entropy Alloys -- 5.2.8.1 MCrAlY Multicomponent Alloy -- 5.2.8.2 High Entropy Alloy (HEA) -- 5.2.9 Multimaterials -- 5.3 Perspective and Challenges -- References -- Part III Additive Friction Stir Deposition -- 6 Process Fundamentals of Additive Friction Stir Deposition 135 David Garcia and Hang Z. Yu -- 6.1 Additive Friction Stir Deposition - Macroscopic Process Overview -- 6.2 Thermo-Mechanical Processing Evolution -- 6.3 Heat Generation and Heat Transfer -- 6.3.1 Heat Generation and Heat Transfer Mechanisms -- 6.3.2 Peak Temperature and Material Dependence -- 6.4 Material Flow and Deformation -- References -- 7 Dynamic Microstructure Evolution in Additive Friction Stir Deposition 153 Robert J. Griffiths and Hunter A. Rauch -- 7.1 Introduction to Microstructure Evolution in Additive Friction Stir Deposition -- 7.2 Dynamic Microstructure Evolution in Single-Phase Materials -- 7.2.1 Stacking Fault Energy and Dislocation Mobility -- 7.2.2 Dynamic Recovery -- 7.2.3 Continuous Dynamic Recrystallization -- 7.2.4 Discontinuous Dynamic Recrystallization -- 7.2.5 Static and Post-Dynamic Recrystallization -- 7.2.6 Heterogeneous Deposits and Metadynamic Recrystallization -- 7.3 Dynamic Microstructure Evolution in Multiple-Phase Materials -- 7.3.1 Thermal Evolution During Additive Friction Stir Deposition -- 7.3.2 Evolution of Secondary Phases at Low Temperature -- 7.3.3 Evolution of Secondary Phases at High Temperature -- 7.3.4 Evolution of Secondary Phases After Deformation -- 7.3.5 Mapping Secondary Phase Evolution to Processing Space -- 7.4 Effects of Material Transport on Microstructure Evolution -- 7.4.1 Mechanisms of Material Transport -- 7.4.2 Material Transport for the Homogenization of Mixtures -- 7.4.3 Densification of Material Through Material Transport -- 7.4.4 Material Transport and Spatial Variance in Thermomechanical Conditions -- 7.5 The Study of Microstructure Evolution in Additive Friction Stir Deposition -- 7.5.1 Contemporary Approaches -- 7.5.2 Novel Approaches -- Acknowledgement -- References -- 8 Mechanical Properties of Additive Friction Stir Deposits 181 Dustin Avery and Mackenzie Perry -- 8.1 Introduction -- 8.2 Magnesium-Based Alloys -- 8.2.1 WE43 -- 8.2.2 AZ31 -- 8.3 Aluminum-Based Alloys -- 8.3.1 5xxx -- 8.3.2 2xxx -- 8.3.3 6xxx -- 8.3.4 7xxx -- 8.3.5 Cast Al Alloys -- 8.4 Other Alloys Systems -- 8.4.1 Nickel-Based Alloys -- 8.4.2 Copper-Based Alloys -- 8.4.3 Titanium-Based Alloys -- 8.4.4 Steel Alloys -- 8.4.5 High-Entropy Alloys -- 8.4.6 Metal Matrix Composites -- 8.5 Repair -- 8.6 Summary and Future Perspectives -- 8.6.1 Anisotropy -- 8.6.2 Graphite Lubricant -- 8.6.3 Multimaterial or Designed Feedstock -- 8.6.4 Effect of Process Parameters on Mechanical Properties -- 8.6.5 Active Cooling/Heating -- 8.6.6 Heat Treatment -- 8.6.7 High-Temperature Materials - Tool Wear -- 8.6.8 Unique Possibilities -- 8.6.9 Modeling -- References -- 9 Potential Industrial Applications of Additive Friction Stir Deposition 209 Hang Z. Yu, Rajiv S. Mishra, Chase D. Cox, and Zhili Feng -- 9.1 Large-Scale Metal Additive Manufacturing -- 9.2 Selective Area Cladding -- 9.3 Recycling and Upcycling -- 9.4 Structural Repair -- 9.5 Underwater Deposition -- Acknowledgment -- References -- Part IV Ultrasonic Additive Manufacturing -- 10 Process Fundamentals of Ultrasonic Additive Manufacturing 233 Austin Ward -- 10.1 Process Overview -- 10.1.1 Process Parameters -- 10.2 Temperature Rise and Thermal Modeling -- 10.2.1 Heat Generation During Welding -- 10.2.2 Sonotrode Contact Stress -- 10.2.3 Coefficient of Friction -- 10.2.4 Temperature Profile -- 10.3 Feedstock Bonding Mechanisms -- 10.3.1 Oxide Breakdown -- 10.3.2 Asperity Deformation -- 10.3.3 Diffusional Bonding Processes -- 10.3.4 Liquid-Phase Bonding -- 10.4 Dissimilar Metal Consolidation -- 10.4.1 Mechanical and Thermal Modeling -- 10.4.2 Dissimilar Metal Junction Growth -- 10.4.3 Interdiffusion -- 10.5 Acoustic Softening and Strain Normality -- 10.5.1 Cyclic Strain Ratcheting -- 10.6 Summary -- Acknowledgments -- References -- 11 Ultrasonic Additive Manufacturing: Microstructural and Mechanical Characterization 259 Tianyang (Tyler) Han, Leon M. Headings, and Marcelo J. Dapino -- 11.1 Introduction -- 11.2 Microstructure Analysis of UAM Builds -- 11.2.1 Similar Material Joining with UAM -- 11.2.2 Dissimilar Material Joining with UAM -- 11.2.2.1 Al-Ceramic Weld -- 11.2.2.2 Ni-Steel Weld -- 11.3 Hardness Analysis of UAM Builds -- 11.4 Mechanical Characterization of UAM Builds -- 11.4.1 Design of a Custom Shear Testing Method -- 11.4.2 Validation of the Shear Test -- 11.4.3 Finite element Modeling of the Shear Test -- 11.4.4 Application of the Shear Test to UAM Samples -- 11.5 Conclusions -- References -- 12 Industrial Applications of Ultrasonic Additive Manufacturing 279 Mark Norfolk -- 12.1 Early Years -- 12.2 Increased Power → Increased Capability -- 12.3 Modern Application. | |
505 | 8 | |8 1.2\x |a s -- 12.3.1 Electrification -- 12.3.2 Thermal Management -- 12.3.3 Embedded Electronics -- 12.3.3.1 SmartPlate -- 12.3.3.2 SensePipe -- 12.4 Future Applications -- References -- Part V Sintering-Based Processes -- 13 Principles of Solid-State Sintering 297 Basil J. Paudel, Albert C. To, and Amir Mostafaei -- 13.1 Introduction -- 13.2 Basic Terminology -- 13.2.1 Sintering -- 13.2.2 Relative Density/Green Density -- 13.2.3 Coordination Number -- 13.2.4 Surface Tension/Surface Energy -- 13.2.5 Wetting Angle/Dihedral Angle -- 13.2.6 Neck Growth/Shrinkage/Densification -- 13.3 Sintering Stress -- 13.3.1 Two Particle Model -- 13.3.1.1 Case I: Without Shrinkage -- 13.3.1.2 Case II: With Shrinkage -- 13.3.2 Driving Force -- 13.3.3 Interfacial Activity/Thermodynamics -- 13.4 Mass Transport Mechanisms -- 13.4.1 Grain Boundary Diffusion -- 13.4.2 Lattice/Volume Diffusion -- 13.4.3 Viscous Flow -- 13.4.4 Surface Diffusion -- 13.4.5 Evaporation/Condensation -- 13.4.6 Gas Diffusion -- 13.5 Sintering Stages -- 13.6 Sintering Simulation -- 13.7 Concluding Remarks, Challenges, and Future Works -- References -- 14 Material Extrusion Additive Manufacturing 313 Alexander C. Barbati and Aaron Preston -- 14.1 Introduction -- 14.2 Hierarchy of MEAM Parts and Feedstock Behavior -- 14.3 Feedstock Attributes -- 14.4 Extrusion Control -- 14.5 Toolpathing: Strength and Quality -- 14.6 Conclusions -- Acknowledgments -- References -- 15 Binder Jetting-based Metal Printing 339 Marco Mariani, Nora Lecis, and Amir Mostafaei -- 15.1 Introduction to Binder Jetting -- 15.2 Printing Phase -- 15.2.1 Particulate Feedstock -- 15.2.1.1 Feedstock Materials -- 15.2.1.2 Feedstock Morphology and Size Distribution -- 15.2.2 Binder Selection -- 15.2.3 Powder Spreading and Binder Deposition System Configurations -- 15.3 Thermal Treatments -- 15.3.1 Curing -- 15.3.2 Debinding -- 15.3.3 Sintering -- 15.3.4 Additional Treatments -- 15.4 Future Developments -- 15.5 Conclusion -- References -- 16 Sintering-based Metal Additive Manufacturing Methods for Magnetic Materials 361 H. Wang, A. M. Elliot, and M. P. Paranthaman -- 16.1 Introduction -- 16.2 Background -- 16.3 Additive Manufacturing Methods -- 16.4 Applications -- 16.5 Summary -- Acknowledgments -- References -- 17 Future Perspectives 379 Hang Z. Yu, Nihan Tuncer, and Zhili Feng -- 17.1 Enhancing the Understanding of Process Fundamentals -- 17.2 Expanding the Printable Material Library -- 17.3 Embracing Artificial Intelligence for Quality Control and Process Prediction -- References -- Index. | |
520 | |a Solid-State Metal Additive Manufacturing Timely summary of state-of-the-art solid-state metal 3D printing technologies, focusing on fundamental processing science and industrial applications Solid-State Metal Additive Manufacturing: Physics, Processes, Mechanical Properties, and Applications provides detailed and in-depth discussion on different solid-state metal additive manufacturing processes and applications, presenting associated methods, mechanisms and models, and unique benefits, as well as a detailed comparison to traditional fusion-based metal additive manufacturing. The text begins with a high-level overview of solid-state metal additive manufacturing with an emphasis on its position within the metal additive manufacturing spectrum and its potential for meeting specific demands in the aerospace, automotive, and defense industries. Next, each of the four categories of solid-state additive technologies--cold spray additive manufacturing, additive friction stir deposition, ultrasonic additive manufacturing, and sintering-based processes--is discussed in depth, reviewing advances in processing science, metallurgical science, and innovative applications. Finally, the future directions of these solid-state processes, especially the material innovation and artificial intelligence aspects, are discussed. Sample topics covered in Solid-State Metal Additive Manufacturing include: Physical processes and bonding mechanisms in impact-induced bonding and microstructures and microstructural evolution in cold sprayed materials Process fundamentals, dynamic microstructure evolution, and potential industrial applications of additive friction stir deposition Microstructural and mechanical characterization and industrial applications of ultrasonic additive manufacturing Principles of solid-state sintering, binder jetting-based metal printing, and sintering-based metal additive manufacturing methods for magnetic materials Critical issues inherent to melting and solidification, such as porosity, high residual stress, cast microstructure, anisotropic mechanical properties, and hot cracking Solid-State Metal Additive Manufacturing is an essential reference on the subject for academic researchers in materials science, mechanical, and biomedicine, as well as professional engineers in various manufacturing industries, especially those involved in building new additive technologies. | ||
588 | 0 | |a Online resource; title from PDF title page (John Wiley, viewed May 23, 2024). | |
650 | 0 | |a Additive manufacturing. |0 http://id.loc.gov/authorities/subjects/sh2020000052 | |
650 | 0 | |a Metallurgy. |0 http://id.loc.gov/authorities/subjects/sh85084158 | |
700 | 1 | |a Yu, Hang Z., |e editor. | |
700 | 1 | |a Tuncer, Nihan, |e editor. | |
700 | 1 | |a Feng, Zhili, |e editor. |0 http://id.loc.gov/authorities/names/nb2006017431 |1 http://isni.org/isni/0000000116659756 | |
856 | 4 | 0 | |u https://colorado.idm.oclc.org/login?url=https://onlinelibrary.wiley.com/doi/book/10.1002/9783527839353 |z Full Text (via Wiley) |
915 | |a - | ||
944 | |a MARS - RDA ENRICHED | ||
956 | |a Wiley Online Library eBooks | ||
956 | |b Wiley Online Library: Complete oBooks | ||
994 | |a 92 |b COD | ||
998 | |b Added to collection wiley.ebooks | ||
999 | f | f | |s 5332bcc9-2dba-4fd3-91fc-61177178161f |i d25d5ff5-f9d0-4ff1-8cb7-f939f1888bcd |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e TS183.25 |h Library of Congress classification |i web |