Solid-state metal additive manufacturing : physics, processes, mechanical properties, and applications / edited by Hang Z. Yu, Nihan Tuncer, and Zhili Feng.

Solid-State Metal Additive Manufacturing Timely summary of state-of-the-art solid-state metal 3D printing technologies, focusing on fundamental processing science and industrial applications Solid-State Metal Additive Manufacturing: Physics, Processes, Mechanical Properties, and Applications provide...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Wiley)
Other Authors: Yu, Hang Z. (Editor), Tuncer, Nihan (Editor), Feng, Zhili (Editor)
Format: eBook
Language:English
Published: Weinheim, Germany : Wiley-VCH, 2024.
Subjects:
Table of Contents:
  • Preface
  • Part I Introduction
  • 1 Introduction and Overview 3 Hang Z. Yu, Nihan Tuncer, and Zhili Feng
  • 1.1 Overview and History of Metal Additive Manufacturing
  • 1.2 Liquid-State Bonding Versus Solid-State Bonding
  • 1.2.1 Liquid-State Bonding
  • 1.2.2 Solid-State Bonding
  • 1.3 Nonbeam-Based, Solid-State Metal Additive Manufacturing
  • 1.3.1 Deformation-Based Metal Additive Manufacturing
  • 1.3.2 Sintering-Based Metal Additive Manufacturing
  • 1.4 Additive Manufacturing Categorization Based on the Relationship Between Shape Forming and Consolidation
  • 1.5 Organization of the Book
  • References
  • Part II Cold Spray Additive Manufacturing
  • 2 Impact-Induced Bonding: Physical Processes and Bonding Mechanisms 21 David Veysset and Mostafa Hassani
  • 2.1 Introduction
  • 2.2 Fundamentals of Impact Bonding
  • 2.2.1 Plate Impacts and Explosive Welding
  • 2.2.1.1 The Shock Equations of State
  • 2.2.1.2 Limiting Conditions for Explosive Welding
  • 2.2.2 Laser Impact Bonding
  • 2.3 Bonding Mechanisms in Cold Spray
  • 2.3.1 Proposed Mechanisms
  • 2.3.1.1 The Role of Jetting and Impact Pressure in Particle Bonding
  • 2.3.1.2 The Limiting Case of Impact Melting
  • 2.3.1.3 Adiabatic Shear Instability
  • 2.3.1.4 Dissimilar Materials Impact
  • 2.3.2 Influence of Particle Characteristics
  • 2.3.2.1 Particle Temperature
  • 2.3.2.2 Particle Size
  • 2.3.2.3 Surface Oxide and Hydroxide Effects
  • References
  • 3 Microstructures and Microstructural Evolution in Cold-Sprayed Materials 49 Luke N. Brewer and Lorena I. Perez-Andrade
  • 3.1 Introduction
  • 3.2 Defect Structures
  • 3.2.1 Vacancies
  • 3.2.2 Dislocation Structure
  • 3.2.3 Grain Structure
  • 3.2.4 Precipitate Structure
  • 3.2.5 Porosity
  • 3.3 Microstructural Evolution of Thermally Treated Cold-Sprayed Materials
  • 3.3.1 Recovery, Recrystallization, and Grain Growth
  • 3.3.2 Precipitation
  • 3.3.3 Heat Treatment of Feedstock Powders and its Impact on Microstructure
  • 3.4 Conclusions
  • Acknowledgements
  • References
  • 4 Mechanical Properties of Cold Spray Deposits 75 Sara Bagherifard and Mario Guagliano
  • 4.1 Introduction
  • 4.2 Mechanical Properties
  • 4.2.1 Adhesive Strength
  • 4.2.1.1 Adhesive Strength Test Methods
  • 4.2.1.2 The Effect of Process Parameters on Adhesive Strength
  • 4.2.1.3 The effect of Pre-/Post-treatments on Adhesive Strength
  • 4.2.2 Cohesive Strength
  • 4.2.2.1 Cohesive Strength Test methods
  • 4.2.2.2 Cohesive Strength Under Static Loading
  • 4.2.2.3 Cohesive Strength Under Fatigue Loading
  • 4.2.2.4 Anisotropy in Cohesive Strength
  • 4.2.3 Summary and Future Perspectives
  • References
  • 5 Cold Spray in Practical and Potential Applications 101 Jingjie Wei, Yong He, Phuong Vo, and Yu Zou
  • 5.1 Introduction
  • 5.1.1 The Cold Spray Process
  • 5.1.2 Cold Spray Additive Manufacturing (CSAM)
  • 5.2 Materials
  • 5.2.1 Cu and Cu Alloys
  • 5.2.1.1 2Cu-Ga and Cu-In-Ga
  • 5.2.1.2 Cu-Sn
  • 5.2.1.3 Cu-W
  • 5.2.2 Al and Al Alloys
  • 5.2.3 Ni and Ni Alloys
  • 5.2.4 Stainless Steels
  • 5.2.5 Body Center Cubic (BCC) Metals
  • 5.2.5.1 Tantalum
  • 5.2.5.2 Niobium
  • 5.2.6 Hexagonal Close-Packed (HCP) Metals
  • 5.2.6.1 Titanium
  • 5.2.6.2 Magnesium
  • 5.2.7 Metal Mixes and Metal Matrix Composite (MMC)
  • 5.2.7.1 Metal Mixes
  • 5.2.7.2 Metal Matrix Composite
  • 5.2.8 Multicomponent and High Entropy Alloys
  • 5.2.8.1 MCrAlY Multicomponent Alloy
  • 5.2.8.2 High Entropy Alloy (HEA)
  • 5.2.9 Multimaterials
  • 5.3 Perspective and Challenges
  • References
  • Part III Additive Friction Stir Deposition
  • 6 Process Fundamentals of Additive Friction Stir Deposition 135 David Garcia and Hang Z. Yu
  • 6.1 Additive Friction Stir Deposition - Macroscopic Process Overview
  • 6.2 Thermo-Mechanical Processing Evolution
  • 6.3 Heat Generation and Heat Transfer
  • 6.3.1 Heat Generation and Heat Transfer Mechanisms
  • 6.3.2 Peak Temperature and Material Dependence
  • 6.4 Material Flow and Deformation
  • References
  • 7 Dynamic Microstructure Evolution in Additive Friction Stir Deposition 153 Robert J. Griffiths and Hunter A. Rauch
  • 7.1 Introduction to Microstructure Evolution in Additive Friction Stir Deposition
  • 7.2 Dynamic Microstructure Evolution in Single-Phase Materials
  • 7.2.1 Stacking Fault Energy and Dislocation Mobility
  • 7.2.2 Dynamic Recovery
  • 7.2.3 Continuous Dynamic Recrystallization
  • 7.2.4 Discontinuous Dynamic Recrystallization
  • 7.2.5 Static and Post-Dynamic Recrystallization
  • 7.2.6 Heterogeneous Deposits and Metadynamic Recrystallization
  • 7.3 Dynamic Microstructure Evolution in Multiple-Phase Materials
  • 7.3.1 Thermal Evolution During Additive Friction Stir Deposition
  • 7.3.2 Evolution of Secondary Phases at Low Temperature
  • 7.3.3 Evolution of Secondary Phases at High Temperature
  • 7.3.4 Evolution of Secondary Phases After Deformation
  • 7.3.5 Mapping Secondary Phase Evolution to Processing Space
  • 7.4 Effects of Material Transport on Microstructure Evolution
  • 7.4.1 Mechanisms of Material Transport
  • 7.4.2 Material Transport for the Homogenization of Mixtures
  • 7.4.3 Densification of Material Through Material Transport
  • 7.4.4 Material Transport and Spatial Variance in Thermomechanical Conditions
  • 7.5 The Study of Microstructure Evolution in Additive Friction Stir Deposition
  • 7.5.1 Contemporary Approaches
  • 7.5.2 Novel Approaches
  • Acknowledgement
  • References
  • 8 Mechanical Properties of Additive Friction Stir Deposits 181 Dustin Avery and Mackenzie Perry
  • 8.1 Introduction
  • 8.2 Magnesium-Based Alloys
  • 8.2.1 WE43
  • 8.2.2 AZ31
  • 8.3 Aluminum-Based Alloys
  • 8.3.1 5xxx
  • 8.3.2 2xxx
  • 8.3.3 6xxx
  • 8.3.4 7xxx
  • 8.3.5 Cast Al Alloys
  • 8.4 Other Alloys Systems
  • 8.4.1 Nickel-Based Alloys
  • 8.4.2 Copper-Based Alloys
  • 8.4.3 Titanium-Based Alloys
  • 8.4.4 Steel Alloys
  • 8.4.5 High-Entropy Alloys
  • 8.4.6 Metal Matrix Composites
  • 8.5 Repair
  • 8.6 Summary and Future Perspectives
  • 8.6.1 Anisotropy
  • 8.6.2 Graphite Lubricant
  • 8.6.3 Multimaterial or Designed Feedstock
  • 8.6.4 Effect of Process Parameters on Mechanical Properties
  • 8.6.5 Active Cooling/Heating
  • 8.6.6 Heat Treatment
  • 8.6.7 High-Temperature Materials - Tool Wear
  • 8.6.8 Unique Possibilities
  • 8.6.9 Modeling
  • References
  • 9 Potential Industrial Applications of Additive Friction Stir Deposition 209 Hang Z. Yu, Rajiv S. Mishra, Chase D. Cox, and Zhili Feng
  • 9.1 Large-Scale Metal Additive Manufacturing
  • 9.2 Selective Area Cladding
  • 9.3 Recycling and Upcycling
  • 9.4 Structural Repair
  • 9.5 Underwater Deposition
  • Acknowledgment
  • References
  • Part IV Ultrasonic Additive Manufacturing
  • 10 Process Fundamentals of Ultrasonic Additive Manufacturing 233 Austin Ward
  • 10.1 Process Overview
  • 10.1.1 Process Parameters
  • 10.2 Temperature Rise and Thermal Modeling
  • 10.2.1 Heat Generation During Welding
  • 10.2.2 Sonotrode Contact Stress
  • 10.2.3 Coefficient of Friction
  • 10.2.4 Temperature Profile
  • 10.3 Feedstock Bonding Mechanisms
  • 10.3.1 Oxide Breakdown
  • 10.3.2 Asperity Deformation
  • 10.3.3 Diffusional Bonding Processes
  • 10.3.4 Liquid-Phase Bonding
  • 10.4 Dissimilar Metal Consolidation
  • 10.4.1 Mechanical and Thermal Modeling
  • 10.4.2 Dissimilar Metal Junction Growth
  • 10.4.3 Interdiffusion
  • 10.5 Acoustic Softening and Strain Normality
  • 10.5.1 Cyclic Strain Ratcheting
  • 10.6 Summary
  • Acknowledgments
  • References
  • 11 Ultrasonic Additive Manufacturing: Microstructural and Mechanical Characterization 259 Tianyang (Tyler) Han, Leon M. Headings, and Marcelo J. Dapino
  • 11.1 Introduction
  • 11.2 Microstructure Analysis of UAM Builds
  • 11.2.1 Similar Material Joining with UAM
  • 11.2.2 Dissimilar Material Joining with UAM
  • 11.2.2.1 Al-Ceramic Weld
  • 11.2.2.2 Ni-Steel Weld
  • 11.3 Hardness Analysis of UAM Builds
  • 11.4 Mechanical Characterization of UAM Builds
  • 11.4.1 Design of a Custom Shear Testing Method
  • 11.4.2 Validation of the Shear Test
  • 11.4.3 Finite element Modeling of the Shear Test
  • 11.4.4 Application of the Shear Test to UAM Samples
  • 11.5 Conclusions
  • References
  • 12 Industrial Applications of Ultrasonic Additive Manufacturing 279 Mark Norfolk
  • 12.1 Early Years
  • 12.2 Increased Power → Increased Capability
  • 12.3 Modern Application.
  • s
  • 12.3.1 Electrification
  • 12.3.2 Thermal Management
  • 12.3.3 Embedded Electronics
  • 12.3.3.1 SmartPlate
  • 12.3.3.2 SensePipe
  • 12.4 Future Applications
  • References
  • Part V Sintering-Based Processes
  • 13 Principles of Solid-State Sintering 297 Basil J. Paudel, Albert C. To, and Amir Mostafaei
  • 13.1 Introduction
  • 13.2 Basic Terminology
  • 13.2.1 Sintering
  • 13.2.2 Relative Density/Green Density
  • 13.2.3 Coordination Number
  • 13.2.4 Surface Tension/Surface Energy
  • 13.2.5 Wetting Angle/Dihedral Angle
  • 13.2.6 Neck Growth/Shrinkage/Densification
  • 13.3 Sintering Stress
  • 13.3.1 Two Particle Model
  • 13.3.1.1 Case I: Without Shrinkage
  • 13.3.1.2 Case II: With Shrinkage
  • 13.3.2 Driving Force
  • 13.3.3 Interfacial Activity/Thermodynamics
  • 13.4 Mass Transport Mechanisms
  • 13.4.1 Grain Boundary Diffusion
  • 13.4.2 Lattice/Volume Diffusion
  • 13.4.3 Viscous Flow
  • 13.4.4 Surface Diffusion
  • 13.4.5 Evaporation/Condensation
  • 13.4.6 Gas Diffusion
  • 13.5 Sintering Stages
  • 13.6 Sintering Simulation
  • 13.7 Concluding Remarks, Challenges, and Future Works
  • References
  • 14 Material Extrusion Additive Manufacturing 313 Alexander C. Barbati and Aaron Preston
  • 14.1 Introduction
  • 14.2 Hierarchy of MEAM Parts and Feedstock Behavior
  • 14.3 Feedstock Attributes
  • 14.4 Extrusion Control
  • 14.5 Toolpathing: Strength and Quality
  • 14.6 Conclusions
  • Acknowledgments
  • References
  • 15 Binder Jetting-based Metal Printing 339 Marco Mariani, Nora Lecis, and Amir Mostafaei
  • 15.1 Introduction to Binder Jetting
  • 15.2 Printing Phase
  • 15.2.1 Particulate Feedstock
  • 15.2.1.1 Feedstock Materials
  • 15.2.1.2 Feedstock Morphology and Size Distribution
  • 15.2.2 Binder Selection
  • 15.2.3 Powder Spreading and Binder Deposition System Configurations
  • 15.3 Thermal Treatments
  • 15.3.1 Curing
  • 15.3.2 Debinding
  • 15.3.3 Sintering
  • 15.3.4 Additional Treatments
  • 15.4 Future Developments
  • 15.5 Conclusion
  • References
  • 16 Sintering-based Metal Additive Manufacturing Methods for Magnetic Materials 361 H. Wang, A. M. Elliot, and M. P. Paranthaman
  • 16.1 Introduction
  • 16.2 Background
  • 16.3 Additive Manufacturing Methods
  • 16.4 Applications
  • 16.5 Summary
  • Acknowledgments
  • References
  • 17 Future Perspectives 379 Hang Z. Yu, Nihan Tuncer, and Zhili Feng
  • 17.1 Enhancing the Understanding of Process Fundamentals
  • 17.2 Expanding the Printable Material Library
  • 17.3 Embracing Artificial Intelligence for Quality Control and Process Prediction
  • References
  • Index.