Artificial Intelligence for Sustainable Applications.

With the advent of recent technologies, the demand for Information and Communication Technology (ICT)-based applications such as artificial intelligence (AI), machine learning (ML), Internet of Things (IoT), health care, data analytics, augmented reality/virtual reality, cyber-physical systems, and...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Skillsoft)
Main Author: Umamaheswari, K.
Other Authors: Kumar, B. Vinoth, Somasundaram, S. K.
Format: eBook
Language:English
Published: Newark : John Wiley & Sons, Inc., 2023.
Series:Artificial Intelligence and Soft Computing for Industrial Transformation
Subjects:

MARC

LEADER 00000cam a22000007i 4500
001 in00000223867
006 m o d
007 cr |||||||||||
008 230819s2023 nju o ||| 0 eng d
005 20240703204045.9
035 |a (OCoLC)sks1394120101 
037 |a sks165392 
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d N$T  |d YDX  |d DG1  |d OCLCO  |d UKAHL  |d WSU 
019 |a 1393913299 
020 |a 9781394175246  |q electronic book 
020 |a 1394175248  |q electronic book 
020 |a 9781394175253  |q electronic book 
020 |a 1394175256  |q electronic book 
020 |z 9781394174584  |q hardcover 
020 |z 1394174586  |q hardcover 
024 7 |a 10.1002/9781394175253  |2 doi 
029 1 |a AU@  |b 000075196059 
035 |a (OCoLC)1394120101  |z (OCoLC)1393913299 
050 4 |a Q335  |b .U43 2023 
049 |a GWRE 
100 1 |a Umamaheswari, K. 
245 1 0 |a Artificial Intelligence for Sustainable Applications. 
264 1 |a Newark :  |b John Wiley & Sons, Inc.,  |c 2023. 
300 |a 1 online resource (362 p.). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 0 |a Artificial Intelligence and Soft Computing for Industrial Transformation 
505 0 |a Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Medical Applications -- Chapter 1 Predictive Models of Alzheimer's Disease Using Machine Learning Algorithms -- An Analysis -- 1.1 Introduction -- 1.2 Prediction of Diseases Using Machine Learning -- 1.3 Materials and Methods -- 1.4 Methods -- 1.5 ML Algorithm and Their Results -- 1.6 Support Vector Machine (SVM) -- 1.7 Logistic Regression -- 1.8 K Nearest Neighbor Algorithm (KNN) -- 1.9 Naive Bayes -- 1.10 Finding the Best Algorithm Using Experimenter Application -- 1.11 Conclusion -- 1.12 Future Scope -- References 
505 8 |a Chapter 2 Bounding Box Region-Based Segmentation of COVID-19 X-Ray Images by Thresholding and Clustering -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Dataset Used -- 2.4 Proposed Method -- 2.4.1 Histogram Equalization -- 2.4.2 Threshold-Based Segmentation -- 2.4.3 K-Means Clustering -- 2.4.4 Fuzzy-K-Means Clustering -- 2.5 Experimental Analysis -- 2.5.1 Results of Histogram Equalization -- 2.5.2 Findings of Bounding Box Segmentation -- 2.5.3 Evaluation Metrics -- 2.6 Conclusion -- References 
505 8 |a Chapter 3 Steering Angle Prediction for Autonomous Vehicles Using Deep Learning Model with Optimized Hyperparameters -- 3.1 Introduction -- 3.2 Literature Review -- 3.3 Methodology -- 3.3.1 Architecture -- 3.3.2 Data -- 3.3.3 Data Pre-Processing -- 3.3.4 Hyperparameter Optimization -- 3.3.5 Neural Network -- 3.3.6 Training -- 3.4 Experiment and Results -- 3.4.1 Benchmark -- 3.5 Conclusion -- References -- Chapter 4 Review of Classification and Feature Selection Methods for Genome-Wide Association SNP for Breast Cancer -- 4.1 Introduction -- 4.2 Literature Analysis 
505 8 |a 4.2.1 Review of Gene Selection Methods in SNP -- 4.2.2 Review of Classification Methods in SNP -- 4.2.3 Review of Deep Learning Classification Methods in SNP -- 4.3 Comparison Analysis -- 4.4 Issues of the Existing Works -- 4.5 Experimental Results -- 4.6 Conclusion and Future Work -- References -- Chapter 5 COVID-19 Data Analysis Using the Trend Check Data Analysis Approaches -- 5.1 Introduction -- 5.2 Literature Survey -- 5.3 COVID-19 Data Segregation Analysis Using the Trend Check Approaches -- 5.3.1 Trend Check Analysis Segregation 1 Algorithm 
505 8 |a 5.3.2 Trend Check Analysis Segregation 2 Algorithm -- 5.4 Results and Discussion -- 5.5 Conclusion -- References -- Chapter 6 Analyzing Statewise COVID-19 Lockdowns Using Support Vector Regression -- 6.1 Introduction -- 6.2 Background -- 6.2.1 Comprehensive Survey -- Applications in Healthcare Industry -- 6.2.2 Comparison of Various Models for Forecasting -- 6.2.3 Context of the Work -- 6.3 Proposed Work -- 6.3.1 Conceptual Architecture -- 6.3.2 Procedure -- 6.4 Experimental Results -- 6.5 Discussion and Conclusion -- 6.5.1 Future Scope -- References 
500 |a Chapter 7 A Systematic Review for Medical Data Fusion Over Wireless Multimedia Sensor Networks 
520 |a With the advent of recent technologies, the demand for Information and Communication Technology (ICT)-based applications such as artificial intelligence (AI), machine learning (ML), Internet of Things (IoT), health care, data analytics, augmented reality/virtual reality, cyber-physical systems, and future generation networks, has increased drastically. In recent years, artificial intelligence has played a more significant role in everyday activities. While AI creates opportunities, it also presents greater challenges in the sustainable development of engineering applications. Therefore, the association between AI and sustainable applications is an essential field of research. Moreover, the applications of sustainable products have come a long way in the past few decades, driven by social and environmental awareness, and abundant modernization in the pertinent field. New research efforts are inevitable in the ongoing design of sustainable applications, which makes the study of communication between them a promising field to explore. 
650 0 |a Artificial intelligence. 
650 0 |a Information technology. 
700 1 |a Kumar, B. Vinoth. 
700 1 |a Somasundaram, S. K. 
776 0 8 |i Print version:  |a Umamaheswari, K.  |t Artificial Intelligence for Sustainable Applications  |d Newark : John Wiley & Sons, Incorporated,c2023  |z 9781394174584 
856 4 0 |u https://ucblibraries.skillport.com/skillportfe/main.action?assetid=165392  |z Full Text (via Skillsoft) 
915 |a 7 
956 |a Skillsoft ITPro 
956 |b Skillsoft ITPro Skillport Collection 
998 |b Added to collection Books24x7.itproSP 
994 |a 92  |b COD 
999 f f |s b47ebef5-608d-4bfb-99a7-441a01be73e6  |i cd47cc68-301b-453f-84ff-47e2be214dc8 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e Q335 .U43 2023  |h Library of Congress classification  |i web