Computational modeling in cognition principles and practice / Stephan Lewandowsky and Simon Farrell.

A clear introduction to the principles of using computational and mathematical models in psychology and cognitive science.

Saved in:
Bibliographic Details
Online Access: Full Text (via SAGE)
Main Author: Lewandowsky, Stephan
Other Authors: Farrell, Simon, 1976-
Format: eBook
Language:English
Published: Thousand Oaks : SAGE Publications, 2010.
Subjects:

MARC

LEADER 00000cam a2200000Mu 4500
001 in00000226687
006 m o d
007 cr |||||||||||
008 160803s2010 cau o ||| 0 eng d
005 20240906232235.8
020 |a 9781452223384  |q (ebook) 
020 |a 1452223386 
020 |a 9781412970761  |q (paperback) 
020 |a 1412970768 
035 |a (OCoLC)sage1229357249 
035 |a (OCoLC)1229357249 
037 |a sage/computational-modeling-in-cognition 
040 |a LVT  |b eng  |c LVT  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
049 |a GWRE 
050 4 |a BF311 ǂb .L467 2011eb 
100 1 |a Lewandowsky, Stephan. 
245 1 0 |a Computational modeling in cognition  |b principles and practice /  |c Stephan Lewandowsky and Simon Farrell. 
260 |a Thousand Oaks :  |b SAGE Publications,  |c 2010. 
300 |a 1 online resource (327 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
505 0 |a Cover Page -- Title Page -- Copyright -- Contents -- Preface -- 1. Introduction -- 1.1 Models and Theories in Science -- 1.2 Why Quantitative Modeling? -- 1.3 Quantitative Modeling in Cognition -- 1.3.1 Models and Data -- 1.3.2 From Ideas to Models -- 1.3.3 Summary -- 1.4 The Ideas Underlying Modeling and Its Distinct Applications -- 1.4.1 Elements of Models -- 1.4.2 Data Description -- 1.4.3 Process Characterization -- 1.4.4 Process Explanation -- 1.4.5 Classes of Models -- 1.5 What Can We Expect From Models? -- 1.5.1 Classification of Phenomena -- 1.5.2 Emergence of Understanding. 
505 8 |a 1.5.3 Exploration of Implications -- 1.6 Potential Problems -- 1.6.1 Scope and Testability -- 1.6.2 Identification and Truth -- 2. From Words to Models: Building a Toolkit -- 2.1 Working Memory -- 2.1.1 The Phonological Loop -- 2.1.2 Theoretical Accounts of the Word Length Effect -- 2.2 The Phonological Loop: 144 Models of Working Memory -- 2.2.1 Decay Process -- 2.2.2 Recall Process -- 2.2.3 Rehearsal -- 2.3 Building a Simulation -- 2.3.1 MATLAB -- 2.3.2 The Target Methodology -- 2.3.3 Setting Up the Simulation -- 2.3.4 Some Unanticipated Results -- 2.3.5 Variability in Decay. 
505 8 |a 2.4 What Can We Learn From These Simulations? -- 2.4.1 The Phonological Loop Model Instantiated -- 2.4.2 Testability and Falsifiability -- 2.4.3 Revisiting Model Design: Foundational Decisions -- 2.5 The Basic Toolkit -- 2.5.1 Parameters -- 2.5.2 Discrepancy Function -- 2.5.3 Parameter Estimation and Model-Fitting Techniques -- 2.6 Models and Data: Sufficiency and Explanation -- 2.6.1 Sufficiency of a Model -- 2.6.2 Verisimilitude Versus Truth -- 2.6.3 The Nature of Explanations -- 3. Basic Parameter Estimation Techniques -- 3.1 Fitting Models to Data: Parameter Estimation. 
505 8 |a 3.1.1 Visualizing Modeling -- 3.1.2 An Example -- 3.1.3 Inside the Box: Parameter Estimation Techniques -- 3.2 Considering the Data: What Level of Analysis? -- 3.2.1 Implications of Averaging -- 3.2.2 Fitting Individual Participants -- 3.2.3 Fitting Subgroups of Data -- 3.2.4 Fitting Aggregate Data -- 3.2.5 Having Your Cake and Eating It: Multilevel Modeling -- 3.2.6 Recommendations -- 4. Maximum Likelihood Estimation -- 4.1 Basics of Probabilities -- 4.1.1 Defining Probability -- 4.1.2 Properties of Probabilities -- 4.1.3 Probability Functions -- 4.2 What Is a Likelihood? 
505 8 |a 4.2.1 Inverse Probability and Likelihood -- 4.3 Defining a Probability Function -- 4.3.1 Probability Functions Specified by the Psychological Model -- 4.3.2 Probability Functions via Data Models -- 4.3.3 Two Types of Probability Functions -- 4.3.4 Extending the Data Model -- 4.3.5 Extension to Multiple Data Points and Multiple Parameters -- 4.4 Finding the Maximum Likelihood -- 4.5 Maximum Likelihood Estimation for Multiple Participants -- 4.5.1 Estimation for Individual Participants -- 4.5.2 Estimating a Single Set of Parameters -- 4.6 Properties of Maximum Likelihood Estimators. 
500 |a 5. Parameter Uncertainty and Model Comparison. 
520 8 |a A clear introduction to the principles of using computational and mathematical models in psychology and cognitive science. 
650 0 |a Cognition  |x Mathematical models. 
650 7 |a Cognition  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00866468 
700 1 |a Farrell, Simon,  |d 1976-  |1 https://id.oclc.org/worldcat/entity/E39PBJbM6vGqpHTKXYKYT8vrbd 
758 |i has work:  |a Computational modeling in cognition (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFHJRfCjTkvbtPVgw9T7f3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://sk.sagepub.com/books/computational-modeling-in-cognition  |z Full Text (via SAGE) 
915 |a M 
956 |a Sage Knowledge 
956 |b SAGE Knowledge Complete Books Reference and Navigator Collection 2019 
956 |b SAGE Knowledge Complete Books Collection 2022 
956 |b SAGE Knowledge Complete Books Reference and Navigator Collection 2018 
994 |a 92  |b COD 
998 |b Custom text change 
999 f f |s c0a2a203-20df-4698-9a59-ebf070f8e554  |i fe7a1d1e-b4e1-4e3d-af17-486961b87883 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e BF311 ǂb .L467 2011eb   |h Library of Congress classification  |i web