Energy Diffusion-Advection Models of Nonthermal Particle Acceleration in Simulations of Relativistic Plasma Turbulence / K. W Wong.

Relativistic nonthermal plasmas are ubiquitous in high-energy astrophysical systems featuring turbulence such as pulsar wind nebulae and active galactic nuclei, as inferred from broadband nonthermal emission spectra. The underlying turbulent nonthermal particle acceleration (NTPA) processes have tra...

Full description

Saved in:
Bibliographic Details
Online Access: Connect to online resource
Main Author: Wong, K. W. (Author)
Format: Thesis Electronic eBook
Language:English
Published: Ann Arbor : ProQuest Dissertations & Theses, 2024.
Subjects:

MARC

LEADER 00000nam a22000003i 4500
001 in00000231047
006 m d
007 cr un
008 240718s2024 miu|||||sm |||| ||eng d
005 20240903194959.5
020 |a 9798381415148 
035 |a (MiAaPQD)AAI30989441 
035 |a AAI30989441 
040 |a MiAaPQD  |b eng  |e rda  |c MiAaPQD 
100 1 |a Wong, K. W.,  |e author. 
245 1 0 |a Energy Diffusion-Advection Models of Nonthermal Particle Acceleration in Simulations of Relativistic Plasma Turbulence /  |c K. W Wong. 
264 1 |a Ann Arbor :  |b ProQuest Dissertations & Theses,  |c 2024. 
300 |a 1 electronic resource (115 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a This item is not available from ProQuest Dissertations & Theses. 
590 |a School code: 0051 
500 |a Source: Dissertations Abstracts International, Volume: 85-07, Section: B. 
500 |a Advisors: Uzdensky, Dmitri Committee members: Werner, Gregory; Litos, Michael; Shi, Yuan; Kazachenko, Maria. 
502 |b Ph.D.  |c University of Colorado at Boulder  |d 2024. 
520 |a Relativistic nonthermal plasmas are ubiquitous in high-energy astrophysical systems featuring turbulence such as pulsar wind nebulae and active galactic nuclei, as inferred from broadband nonthermal emission spectra. The underlying turbulent nonthermal particle acceleration (NTPA) processes have traditionally been modelled with a Fokker-Planck (FP) diffusion-advection equation for the particle energy distribution. In this dissertation, I test FP-type NTPA theories by analysing three-dimensional (3D) particle-in-cell (PIC) simulations of magnetised turbulence in collisionless relativistic pair plasma. By tracking the energy histories of large numbers of particles in several simulations with different initial magnetisation σ0 and system size, I first test the energy-diffusion assumption of the FP framework, finding simple diffusion throughout the parameter space. I then measure the FP energy diffusion and advection coefficients (D and A, respectively) as functions of particle energy γmc2, and compare their dependence on initial and instantaneous system parameters to theoretical predictions. In the high-energy nonthermal tail, I find, robustly with respect to system size and σ0, that D ~ γ2, with a more complicated but generally shallower scaling at thermal and subthermal energies which varies qualitatively depending on σ0. Hence, I fit D = D0γ2 in the nonthermal region and find that the scaling of D0 with the instantaneous magnetisation σ(t) is consistent with D0 ~ σ3/2, although this flattens somewhat at higher σ ~ 1. I also measure the evolution of the power-law index α(t) of the particle energy distribution and find that it is well-described by an exponential convergence in time. I then build and test an analytic model connecting the FP coefficients and the observed power-law evolution, predicting that A(γ) ~ γ log(γ/γ*A ). This is consistent with my measurements of A(γ, t), and I furthermore find that the measured A(γ, t) can acceptably predict α(t) through the model relations. These results suggest that the basic 2nd-order Fermi acceleration model, which predicts D0 ~ σ, may not be a complete description of NTPA in turbulent collisionless relativistic plasmas. My findings encourage further application of tracked particle methods and FP coefficient measurements as a diagnostic in kinetic simulations of various physical situations including collisionless shocks and magnetic reconnection, with relevance to astrophysical plasmas. 
546 |a English 
650 0 |a Physics.  |0 http://id.loc.gov/authorities/subjects/sh85101653 
650 0 |a Electromagnetism.  |0 http://id.loc.gov/authorities/subjects/sh85042184 
650 0 |a Astrophysics.  |0 http://id.loc.gov/authorities/subjects/sh85009032 
650 4 |a Plasma physics. 
650 0 |a Computational physics.  |0 http://id.loc.gov/authorities/subjects/sh2022007579 
653 |a Nonthermal particle acceleration 
653 |a Magnetisation 
653 |a Subthermal energies 
653 |a Particle energy distribution 
653 |a Magnetic reconnection 
655 7 |a Theses  |x CU Boulder  |x Physics.  |2 local 
700 1 |a Uzdensky, Dmitri A.  |q (Dmitri Anatoljevich),  |d 1970-  |e degree supervisor.  |0 id.loc.gov/authorities/names/no98110312  |0 http://id.loc.gov/authorities/names/no98110312  |1 http://isni.org/isni/0000000041829123 
773 0 |t Dissertations Abstracts International  |g 85-07B. 
791 |a Ph.D. 
792 |a 2024 
856 4 0 |z Connect to online resource  |u https://colorado.idm.oclc.org/login?url=https://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:30989441 
944 |a MARS - RDA ENRICHED 
956 |a ETD 
999 f f |s af5b5edb-7e49-4ab9-9210-6196475cfd7b  |i 6ad148d8-1053-4e6f-82ac-383c694b74ad 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |i web