Differential geometry : from elastic curves to Willmore surfaces / Ulrich Pinkall, Oliver Gross.

This open access book covers the main topics for a course on the differential geometry of curves and surfaces. Unlike the common approach in existing textbooks, there is a strong focus on variational problems, ranging from elastic curves to surfaces that minimize area, or the Willmore functional. Mo...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Authors: Pinkall, Ulrich (Author), Gross, Oliver (Author)
Format: eBook
Language:English
Published: Cham : Birkhäuser, 2024.
Series:Compact textbooks in mathematics.
Subjects:

MARC

LEADER 00000nam a2200000 i 4500
001 in00000232856
006 m o d
007 cr |||||||||||
008 240227s2024 sz a ob 001 0 eng d
005 20240903195013.6
020 |a 9783031398384  |q (electronic bk.) 
020 |a 3031398386  |q (electronic bk.) 
020 |z 9783031398377 
024 7 |a 10.1007/978-3-031-39838-4  |2 doi 
029 1 |a AU@  |b 000076148216 
035 |a (OCoLC)spr1423523829 
035 |a (OCoLC)1423523829 
037 |a spr978-3-031-39838-4 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d OCLCO  |d YDX 
049 |a GWRE 
050 4 |a QA641 
100 1 |a Pinkall, Ulrich,  |e author.  |0 http://id.loc.gov/authorities/names/nr89002562  |1 http://isni.org/isni/0000000046679961 
245 1 0 |a Differential geometry :  |b from elastic curves to Willmore surfaces /  |c Ulrich Pinkall, Oliver Gross. 
264 1 |a Cham :  |b Birkhäuser,  |c 2024. 
300 |a 1 online resource (xi, 203 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Compact textbooks in mathematics,  |x 2296-455X 
520 |a This open access book covers the main topics for a course on the differential geometry of curves and surfaces. Unlike the common approach in existing textbooks, there is a strong focus on variational problems, ranging from elastic curves to surfaces that minimize area, or the Willmore functional. Moreover, emphasis is given on topics that are useful for applications in science and computer graphics. Most often these applications are concerned with finding the shape of a curve or a surface that minimizes physically meaningful energy. Manifolds are not introduced as such, but the presented approach provides preparation and motivation for a follow-up course on manifolds, and topics like the Gauss-Bonnet theorem for compact surfaces are covered. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed February 19, 2024). 
650 0 |a Geometry, Differential.  |0 http://id.loc.gov/authorities/subjects/sh85054146 
700 1 |a Gross, Oliver,  |e author.  |0 http://id.loc.gov/authorities/names/nb2001075485  |1 http://isni.org/isni/0000000056320389 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-39838-4  |z Full Text (via Springer) 
830 0 |a Compact textbooks in mathematics.  |0 http://id.loc.gov/authorities/names/no2013108150 
915 |a - 
944 |a MARS - RDA ENRICHED 
956 |a Springer e-books 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2024 English International 
994 |a 92  |b COD 
998 |b New collection springerlink.ebooksms2024 
999 f f |s a31d9db9-b84a-49e9-b53a-a3ccd5a6392c  |i 56a821af-a535-4947-ac38-0a59dbcdde0a 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA641   |h Library of Congress classification  |i web