Korteweg-de Vries flows with general initial conditions / Shinichi Kotani.

Large numbers of studies of the KdV equation have appeared since the pioneering paper by Gardner, Greene, Kruskal, and Miura in 1967. Most of those works have employed the inverse spectral method for 1D Schrödinger operators or an advanced Fourier analysis. Although algebraic approaches have been d...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Kotani, Shinichi (Author)
Format: eBook
Language:English
Published: Singapore : Springer, 2024.
Series:Mathematical physics studies.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000233506
006 m o d
007 cr |||||||||||
008 240308s2024 si a ob 001 0 eng d
005 20240903194429.2
019 |a 1424981254  |a 1425245031 
020 |a 9789819997381  |q (electronic bk.) 
020 |a 9819997380  |q (electronic bk.) 
020 |z 9789819997374 
020 |z 9819997372 
024 7 |a 10.1007/978-981-99-9738-1  |2 doi 
029 1 |a AU@  |b 000076148160 
035 |a (OCoLC)spr1425486822 
035 |a (OCoLC)1425486822  |z (OCoLC)1424981254  |z (OCoLC)1425245031 
037 |a spr978-981-99-9738-1 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d EBLCP  |d OCLCO  |d YDX  |d OCLKB  |d OCLCQ 
049 |a GWRE 
050 4 |a QA377 
100 1 |a Kotani, Shinichi,  |e author. 
245 1 0 |a Korteweg-de Vries flows with general initial conditions /  |c Shinichi Kotani. 
264 1 |a Singapore :  |b Springer,  |c 2024. 
300 |a 1 online resource (x, 162 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Mathematical Physics Studies,  |x 2352-3905 
505 0 |a Introduction -- Sato's Theory -- KdV Flow I: Reflectionless Case -- KdV Flow II: Extension -- Applications -- Further Topics -- Appendix. 
520 |a Large numbers of studies of the KdV equation have appeared since the pioneering paper by Gardner, Greene, Kruskal, and Miura in 1967. Most of those works have employed the inverse spectral method for 1D Schrödinger operators or an advanced Fourier analysis. Although algebraic approaches have been discovered by Hirota-Sato and Marchenko independently, those have not been fully investigated and analyzed. The present book offers a new approach to the study of the KdV equation, which treats decaying initial data and oscillating data in a unified manner. The author's method is to represent the tau functions introduced by Hirota-Sato and developed by Segal-Wilson later in terms of the Weyl-Titchmarsh functions (WT functions, in short) for the underlying Schrödinger operators. The main result is stated by a class of WT functions satisfying some of the asymptotic behavior along a curve approaching the spectrum of the Schrödinger operators at +∞ in an order of -(n-1/2) for the nth KdV equation. This class contains many oscillating potentials (initial data) as well as decaying ones. Especially bounded smooth ergodic potentials are included, and under certain conditions on the potentials, the associated Schrödinger operators have dense point spectrum. This provides a mathematical foundation for the study of the soliton turbulence problem initiated by Zakharov, which was the author's motivation for extending the class of initial data in this book. A large class of almost periodic potentials is also included in these ergodic potentials. P. Deift has conjectured that any solutions to the KdV equation starting from nearly periodic initial data are almost periodic in time. Therefore, our result yields a foundation for this conjecture. For the reader's benefit, the author has included here (1) a basic knowledge of direct and inverse spectral problem for 1D Schrödinger operators, including the notion of the WT functions; (2) Sato's Grassmann manifold method revised by Segal-Wilson; and (3) basic results of ergodic Schrödinger operators. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed March 7, 2024). 
650 0 |a Korteweg-de Vries equation.  |0 http://id.loc.gov/authorities/subjects/sh95003263 
776 0 8 |c Original  |z 9819997372  |z 9789819997374  |w (OCoLC)1412000976 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-981-99-9738-1  |z Full Text (via Springer) 
830 0 |a Mathematical physics studies.  |0 http://id.loc.gov/authorities/names/n42015978 
915 |a - 
944 |a MARS - RDA ENRICHED 
956 |a Springer e-books 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2024 English International 
994 |a 92  |b COD 
998 |b New collection springerlink.ebooksms2024 
999 f f |s 0b01e7c7-37c6-40bb-94e3-f20bdea34304  |i dca93a33-05d5-461f-8acc-ec981c978758 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA377   |h Library of Congress classification  |i web