Hypothesis generation and interpretation : design principles and patterns for big data applications / Hiroshi Ishikawa.

This book focuses in detail on data science and data analysis and emphasizes the importance of data engineering and data management in the design of big data applications. The author uses patterns discovered in a collection of big data applications to provide design principles for hypothesis generat...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Ishikawa, Hiroshi, 1956- (Author)
Format: eBook
Language:English
Published: Cham : Springer, 2024.
Series:Studies in big data ; v. 139.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000234346
006 m o d
007 cr |||||||||||
008 240109s2024 sz a ob 001 0 eng d
005 20240903194850.6
019 |a 1416604690  |a 1416724736 
020 |a 9783031435409  |q (electronic bk.) 
020 |a 3031435400  |q (electronic bk.) 
020 |z 9783031435393 
020 |z 3031435397 
024 7 |a 10.1007/978-3-031-43540-9  |2 doi 
029 1 |a AU@  |b 000075810193 
035 |a (OCoLC)spr1416899352 
035 |a (OCoLC)1416899352  |z (OCoLC)1416604690  |z (OCoLC)1416724736 
037 |a spr978-3-031-43540-9 
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d OCLKB  |d YDX  |d OCLCO  |d EBLCP  |d OCLCQ  |d N$T 
049 |a GWRE 
050 4 |a QA76.9.B45 
100 1 |a Ishikawa, Hiroshi,  |d 1956-  |e author.  |0 http://id.loc.gov/authorities/names/n93067053  |1 http://isni.org/isni/0000000083334356 
245 1 0 |a Hypothesis generation and interpretation :  |b design principles and patterns for big data applications /  |c Hiroshi Ishikawa. 
264 1 |a Cham :  |b Springer,  |c 2024. 
300 |a 1 online resource (xii, 372 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Studies in big data,  |x 2197-6511 ;  |v volume 139 
505 0 |a Basic Concept -- Hypothesis -- Science and Hypothesis -- Regression -- Machine Learning and Integrated Approach -- Hypothesis Generation by Difference -- Methods for Integrated Hypothesis Generation -- Interpretation. 
520 |a This book focuses in detail on data science and data analysis and emphasizes the importance of data engineering and data management in the design of big data applications. The author uses patterns discovered in a collection of big data applications to provide design principles for hypothesis generation, integrating big data processing and management, machine learning and data mining techniques. The book proposes and explains innovative principles for interpreting hypotheses by integrating micro-explanations (those based on the explanation of analytical models and individual decisions within them) with macro-explanations (those based on applied processes and model generation). Practical case studies are used to demonstrate how hypothesis-generation and -interpretation technologies work. These are based on "social infrastructure" applications like in-bound tourism, disaster management, lunar and planetary exploration, and treatment of infectious diseases. The novel methods and technologies proposed in Hypothesis Generation and Interpretation are supported by the incorporation of historical perspectives on science and an emphasis on the origin and development of the ideas behind their design principles and patterns. Academic investigators and practitioners working on the further development and application of hypothesis generation and interpretation in big data computing, with backgrounds in data science and engineering, or the study of problem solving and scientific methods or who employ those ideas in fields like machine learning will find this book of considerable interest. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed January 9, 2024). 
650 0 |a Big data.  |0 http://id.loc.gov/authorities/subjects/sh2012003227 
650 0 |a Automatic hypothesis formation.  |0 http://id.loc.gov/authorities/subjects/sh85010099 
776 0 8 |i Print version:  |z 3031435397  |z 9783031435393  |w (OCoLC)1392340294 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-43540-9  |z Full Text (via Springer) 
830 0 |a Studies in big data ;  |v v. 139.  |0 http://id.loc.gov/authorities/names/no2014005813 
915 |a - 
944 |a MARS 
956 |a Springer e-books 
956 |b Springer Nature - Springer Computer Science eBooks 2024 English International 
994 |a 92  |b COD 
998 |b New collection springerlink.ebookscs2024 
999 f f |s b48fde5d-31af-4cdb-b919-c64f6027b4ec  |i db525ccf-0774-4553-908f-c992ede2b7fb 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA76.9.B45   |h Library of Congress classification  |i web