Multiobjective optimization algorithms for bioinformatics [electronic resource] / Anirban Mukhopadhyay, Sumanta Ray, Ujjwal Maulik, Sanghamitra Bandyopadhyay.
This book provides an updated and in-depth introduction to the application of multiobjective optimization techniques in bioinformatics. In particular, it presents multiobjective solutions to a range of complex real-world bioinformatics problems. The authors first provide a comprehensive yet concise...
Saved in:
Online Access: |
Full Text (via Springer) |
---|---|
Main Author: | |
Other Authors: | , , |
Format: | Electronic eBook |
Language: | English |
Published: |
Singapore :
Springer,
2024.
|
Subjects: |
Table of Contents:
- Intro
- Preface
- Contents
- 1 Introduction
- 1.1 Concepts of Multiobjective Optimization
- 1.2 MOO in Data Mining and Machine Learning
- 1.2.1 Multiobjective Optimization in Clustering
- 1.2.2 Multiobjective Optimization in Classification
- 1.2.3 Multiobjective Optimization in Feature Selection
- 1.2.4 Multiobjective Optimization in AssociationRule Mining
- 1.2.5 Multiobjective Optimization in Other Data Mining Tasks
- 1.3 Multiobjective Optimization for Bioinformatics Tasks
- 1.3.1 Gene Expression Analysis
- 1.3.2 Gene Clustering
- 1.3.3 Coexpression Clustering
- 1.3.4 Gene and MicroRNA Marker Detection
- 1.3.5 Module Detection in Biological Networks
- 1.4 Summary and Scope of the Book
- 2 Multiobjective Interactive Fuzzy Clustering for Gene Expression Data
- 2.1 Clustering and Validity Indices
- 2.1.1 Fuzzy C-means Clustering
- 2.1.2 Hierarchical Clustering
- 2.1.3 Cluster Validity Indices
- 2.1.3.1 Davies-Bouldin Index
- 2.1.3.2 Xie-Beni Index
- 2.1.3.3 Jm Index
- 2.1.3.4 PBM Index
- 2.1.3.5 Silhouette Index
- 2.2 Multiobjective Fuzzy Clustering
- 2.2.1 NSGA-II Algorithm
- 2.2.2 Multiobjective Clustering
- 2.3 Interactive Multiobjective Fuzzy Clustering (IMOC)
- 2.4 Experimental Results
- 2.4.1 Datasets for Experiments
- 2.4.1.1 Human Fibroblasts Serum Dataset
- 2.4.1.2 Yeast Cell Cycle
- 2.4.2 Performance Measures
- 2.4.3 Input Parameters
- 2.4.4 Results and Discussion
- 2.4.5 Statistical Significance Test
- 2.5 Summary
- 3 Multiobjective Rank Aggregation for Gene Prioritization
- 3.1 Introduction
- 3.2 Rank Aggregation Techniques
- 3.2.1 MC4 Algorithm
- 3.2.2 MCT Algorithm
- 3.2.3 Robust Rank Aggregation
- 3.2.4 Condorcet Ranking
- 3.2.5 Rank Aggregation by Voting
- 3.6.1.3 Preprocessing of the Datasets
- 3.6.2 Results and Discussion
- 3.6.2.1 Results for Artificial Datasets
- 3.6.2.2 Results for Real-Life Datasets
- 3.7 Summary
- 4 Multiobjective Simultaneous Gene Ranking and Clustering
- 4.1 Introduction
- 4.2 Multiobjective Simultaneous Clustering and Gene Ranking
- 4.2.1 Chromosome Representation and Initial Population
- 4.2.2 Fitness Computation
- 4.2.3 Crossover and Mutation
- 4.2.4 Selection, Elitism, and Termination
- 4.2.5 Final Solution Selection
- 4.3 Experimental Results
- 4.3.1 Experimental Design
- 4.3.1.1 Artificial Datasets
- 3.3 Distance Metrics for Ranking
- 3.3.1 Kendall's Tau Distance (τ)
- 3.3.2 Spearman's Footrule Distance (ρ)
- 3.4 Objective Functions for Multiobjective Rank Aggregation
- 3.5 Multiobjective PSO-based Rank Aggregation
- 3.5.1 Encoding Mechanism of a Particle
- 3.5.2 Initialization
- 3.5.3 Computing the Fitness Values
- 3.5.4 Updating the Position and Velocity
- 3.5.5 Updating the Non-dominated Archive
- 3.5.6 Overall Algorithm
- 3.6 Experimental Results
- 3.6.1 Datasets and Preprocessing
- 3.6.1.1 Artificial Datasets
- 3.6.1.2 Real-Life Datasets