Statistics in precision health : theory, methods and applications / Yichuan Zhao, Ding-Geng Chen, editors.

This book discusses statistical methods and their innovative applications in precision health. It serves as a valuable resource to foster the development of this growing field within the context of the big data era. The chapters cover a wide range of topics, including foundational principles, statis...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Other Authors: Zhao, Yichuan (Editor), Chen, Ding-Geng (Editor)
Format: eBook
Language:English
Published: Cham : Springer, [2024]
Series:ICSA book series in statistics.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 in00000242309
006 m o d
007 cr |||||||||||
008 240714s2024 sz a o 001 0 eng d
005 20240903194450.2
020 |a 9783031506901  |q (electronic bk.) 
020 |a 3031506901  |q (electronic bk.) 
020 |z 9783031506895 
020 |z 3031506898 
024 7 |a 10.1007/978-3-031-50690-1  |2 doi 
035 |a (OCoLC)spr1446126001 
035 |a (OCoLC)1446126001 
037 |a spr978-3-031-50690-1 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d OCLCO  |d EBLCP 
049 |a GWRE 
050 4 |a R855.3 
245 0 0 |a Statistics in precision health :  |b theory, methods and applications /  |c Yichuan Zhao, Ding-Geng Chen, editors. 
264 1 |a Cham :  |b Springer,  |c [2024] 
264 4 |c ©2024 
300 |a 1 online resource (xvii, 544 pages) :  |b illustrations (chiefly color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a ICSA book series in statistics 
500 |a Includes index. 
520 |a This book discusses statistical methods and their innovative applications in precision health. It serves as a valuable resource to foster the development of this growing field within the context of the big data era. The chapters cover a wide range of topics, including foundational principles, statistical theories, new procedures, advanced methods, and practical applications in precision medicine. Particular attention is devoted to the interplay between precision health, big data, and mobile health research, while also exploring precision medicine's role in clinical trials, electronic health record data analysis, survival analysis, and genomic studies. Targeted at data scientists, statisticians, graduate students, and researchers in academia, industry, and government, this book offers insights into the latest advances in personalized medicine using advanced statistical techniques. 
505 0 |a Part I An Overview of Precision Health in the Big Data Era -- Overview of Precision Health: Past, Current, and Future -- A Selective Review of Individualized Decision Making -- Utilizing Wearable Devices to Improve Precision in Physical Activity Epidemiology: Sensors, Data and Analytic Methods -- Policy Learning for Individualized Treatment Regimes on Infinite Time Horizon -- Q-Learning Based Methods for Dynamic Treatment Regimes -- Personalized Medicine with Multiple Treatments -- Statistical Reinforcement Learning and Dynamic Treatment Regimes -- Part II New Advances in Statistical Methods of Precision Medicine and the Applications -- Integrative Learning to Combine Individualized Treatment Rules from Multiple Randomized Trials -- Adaptive Semi-supervised Learning for Optimal Treatment Regime Estimation with Application to EMR Data -- Estimation and Inference for Individualized Treatment Rules Using Efficient Augmentation and Relaxation Learning -- Subgroup Analysis Using Doubly Robust Semiparametric Procedures -- A Selective Overview of Fusion Penalized Learning in Latent Subgroup Analysis for Precision Medicine -- Part III Precision Medicine in Clinic Trials and the applications to EHR Data -- Mining for Health: A Comparison of Word Embedding Methods for Analysis of EHRs Data -- Adaptive Designs for Precision Medicine in Clinical Trials: A Review and Some Innovative Designs -- Maximum Likelihood Estimation and Design and Inference Considerations for Sequential Multiple Assignment Randomized Trials -- Precision Medicine Designs for Cancer Clinical Trials -- Part IV Precision Medicine in Survival Analysis and Genomic Studies -- Variant Selection and Aggregation of Genetic Association Studies in Precision Medicine -- Leveraging Functional Annotations Improves Cross-population Genetic Risk Prediction -- A Soft-Thresholding Operator for Sparse Time-Varying Effects in Survival Models -- Discovery of Gene-specific Time Effects on Survival -- Modeling and Optimizing Dynamic Treatment Regimens in Continuous Time. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed July 17, 2024). 
650 0 |a Precision medicine  |x Statistical methods. 
700 1 |a Zhao, Yichuan,  |e editor.  |0 http://id.loc.gov/authorities/names/n2022181056 
700 1 |a Chen, Ding-Geng,  |e editor.  |0 http://id.loc.gov/authorities/names/n2010182191  |1 https://id.oclc.org/worldcat/entity/E39PBJfh9xVcYwkfd4XGtwwXBP  |1 http://isni.org/isni/0000000079290741 
776 0 8 |i Print version:  |z 3031506898  |z 9783031506895  |w (OCoLC)1409487397 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-3-031-50690-1  |z Full Text (via Springer) 
830 0 |a ICSA book series in statistics.  |0 http://id.loc.gov/authorities/names/n2015191651 
915 |a - 
944 |a MARS 
956 |a Springer e-books 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2024 English International 
994 |a 92  |b COD 
998 |b Added to collection springerlink.ebooksms2024 
999 f f |s 3638393b-258f-453e-8b16-7fd439830033  |i 255e8683-8f76-4901-90a2-5abcf5075dbf 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e R855.3   |h Library of Congress classification  |i web