|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
in00000244283 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
170905s2009 mau o 000 0 eng d |
005 |
20240813212711.3 |
035 |
|
|
|a (OCoLC)ieee1026991636
|
040 |
|
|
|a STF
|b eng
|c STF
|d OCLCQ
|d UUM
|d OCLCO
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d ESU
|d OCLCO
|
020 |
|
|
|a 9781596934016
|
020 |
|
|
|a 1596934018
|
035 |
|
|
|a (OCoLC)1026991636
|
050 |
|
4 |
|a TJ853.4.M53 ǂb M48 2010eb
|
049 |
|
|
|a GWRE
|
100 |
1 |
|
|a Zahn.
|
245 |
1 |
0 |
|a Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics.
|
260 |
|
|
|a Boston, MA :
|b Artech House,
|c 2009.
|
300 |
|
|
|a 1 online resource (379 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a volume
|b nc
|2 rdacarrier
|
520 |
3 |
|
|a Written and edited by recognized experts in the field, the new Artech House Methods in Bioengineering series offers detailed guidance on authoritative methods for addressing specific bioengineering challenges. Offering a highly practical presentation of each topic, each book provides research engineers, scientists, and students with step-by-step procedures, clear examples, and effective ways to overcome problems that may be encountered. This unique volume presents leading-edge microfluidics methods used to handle, manipulate, and analyze cells, particles biological components (e.g., proteins and DNA) for microdiagnostics.
|c Publisher abstract.
|
588 |
0 |
|
|a Publisher's metadata.
|
505 |
0 |
|
|a Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics -- Contents -- Preface -- Chapter 1 Microfabrication Techniques for Microfluidic Devices -- 1.1 Introduction to microsystems and microfluidic devices -- 1.2 Microfluidic systems: fabrication techniques -- 1.3 Transfer processes -- 1.3.1 Photolithography -- 1.3.2 Molding -- 1.4 Additive processes -- 1.4.1 Growth of SiO2 -- 1.4.2 Deposition techniques -- 1.5 Subtractive techniques -- 1.5.1 Etching -- 1.5.2 Chemical-mechanical polishing and planarization -- 1.6 Bonding processes -- 1.6.1 Lamination -- 1.6.2 Wafer bonding methods -- 1.7 Sacrificial layer techniques -- 1.8 Packaging processes -- 1.8.1 Dicing -- 1.8.2 Electrical interconnection and wire bonding -- 1.8.3 Fluidic interconnection in microfluidic systems -- 1.9 Materials for microfluidic and bio-MEMS applications -- 1.9.1 Glass, pyrex, and quartz -- 1.9.2 Silicon -- 1.9.3 Elastomers -- 1.9.4 Polydimethylsiloxane -- 1.9.5 Epoxy -- 1.9.6 SU-8 thick resists -- 1.9.7 Thick positive resists -- 1.9.8 Benzocyclobutene -- 1.9.9 Polyimides -- 1.9.10 Polycarbonate -- 1.9.11 Polytetrafluoroethylene -- 1.10 Troubleshooting table -- 1.11 Summary -- References -- Chapter 2 Micropumping and Microvalving -- 2.1 Introduction -- 2.2 Actuators for micropumps and microvalves -- 2.2.1 Pneumatic actuators -- 2.2.2 Thermopneumatic actuators -- 2.2.3 Solid-expansion actuators -- 2.2.4 Bimetallic actuators -- 2.2.5 Shape-memory alloy actuators -- 2.2.6 Piezoelectric actuators -- 2.2.7 Electrostatic actuators -- 2.2.8 Electromagnetic actuators -- 2.2.9 Electrochemical actuators -- 2.2.10 Chemical actuators -- 2.2.11 Capillary-force actuators -- 2.3 Micropumps -- 2.3.1 Mechanical pump -- 2.3.2 Nonmechanical pump -- 2.4 Microvalves -- 2.4.1 Mechanical valve -- 2.4.2 Nonmechanical valve -- 2.5 Outlook -- 2.6 Troubleshooting -- 2.7 Summary points.
|
505 |
8 |
|
|a 5.4.5 Hydrophobic coating -- 5.5 Instrumentation and system assembly -- 5.5.1 Detection setup -- 5.5.2 System assembly -- 5.6 Methods -- 5.6.1 Automated glucose assays on-chip -- 5.6.2 Magnetic bead manipulation on-chip -- 5.6.3 Droplet-based immunoassay -- 5.7 Results and discussion -- 5.7.1 Testing of two layer electrowetting device -- 5.7.2 Automated glucose assay on-chip -- 5.7.3 Optimization of magnetic bead washing -- 5.8 Method challenges -- 5.9 Summary points -- Acknowledgments -- References -- Chapter 6 Dielectrophoresis for Particle and Cell Manipulations -- 6.1 Introduction: physical origins of DEP -- 6.2 Introduction: theory of dielectrophoresis -- 6.2.1 Limiting assumptions and typical experimental conditions -- 6.3 Materials: equipment for generating electric field nonuniformities and DEP forces -- 6.3.1 Electric field frequency -- 6.3.2 Electric field phase -- 6.3.3 Geometry -- 6.4 Methods: data acquisition, anticipated results, and interpretation -- 6.4.1 General considerations for dielectrophoretic devices -- 6.4.2 Electrode-based dielectrophoresis -- 6.4.3 Insulative dielectrophoresis -- 6.4.4 Summary of experimental parameters -- 6.5 Troubleshooting -- 6.6 Application notes -- 6.6.1 Particle trapping -- 6.6.2 Particle sorting and fractionation -- 6.6.3 Single-particle trapping -- References -- Chapter 7 Optical Microfluidics for Molecular Diagnostics -- 7.1 Introduction -- 7.2 Integrated optical systems -- 7.2.1 Absorbance detection -- 7.2.2 Fluorescence detection -- 7.2.3 Chemiluminescence detection -- 7.2.4 Interferometric detection -- 7.2.5 Surface plasmon resonance detection -- 7.3 Nanoengineered optical probes -- 7.3.1 Quantum dots -- 7.3.2 Up-converting phosphors -- 7.3.3 Silver-enhanced nanoparticle labeling -- 7.3.4 Localized surface plasmon resonance -- 7.3.5 SPR with nanohole gratings.
|
505 |
8 |
|
|a 7.3.6 Surface-enhanced Raman spectroscopy -- 7.4 Conclusions -- 7.5 Summary -- Acknowledgments -- References -- Chapter 8 Neutrophil Chemotaxis Assay from Whole Blood Samples -- 8.1 Introduction -- 8.2 Device design -- 8.3 Materials -- 8.4 Methods -- 8.4.1 Device fabrication -- 8.4.2 Surface treatment -- 8.4.3 Chemotaxis assay -- 8.5 Data acquisition -- 8.6 Troubleshooting tips -- Appendix 8A -- References -- Chapter 9 Microfluidic Immunoassays -- 9.1 Introduction -- 9.1.1 Microfluidic immunoassay design/operation considerations -- 9.1.2 Example microfluidic immunoassay formats -- 9.2 Materials -- 9.2.1 Microfluidic device -- 9.2.2 Pumps and interconnections -- 9.3 Methods -- 9.3.1 Fabrication of flowcells -- 9.3.2 Sample and reagent delivery -- 9.4 Data acquisition and results -- 9.4.1 FMIA -- 9.4.2 CGIA -- 9.5 Discussion -- 9.5.1 FMIA -- 9.5.2 CGIA -- 9.5.3 Challenges of analyzing complex samples -- Acknowledgments -- References -- Chapter 10 Droplet Based Microfluidics by Shear-Driven Microemulsions -- 10.1 Introduction -- 10.1.1 Advantages of droplet-based microfluidics -- 10.2 Biomedical applications of droplet microfluidics -- 10.2.1 Bioassays -- 10.2.2 Particle formation -- 10.2.3 Therapeutic delivery -- 10.3 Materials -- 10.4 Methods -- 10.4.1 Channel surface modification -- 10.4.2 Hydrophilic surface treatment -- 10.4.3 Hydrophobic surface treatment -- 10.4.4 Solution preparation -- 10.4.5 Generation of droplets -- 10.5 Data acquisition -- 10.5.1 Droplet arrays -- 10.5.2 High-speed cameras -- 10.5.3 Conventional imaging methods -- 10.6 Discussion and commentary -- Acknowledgments -- References -- Chapter 11 MicroFACS System -- 11.1 Introduction -- 11.2 Materials -- 11.3 Methods -- 11.4 Results -- 11.5 Discussion of pitfalls -- 11.6 Statistical analysis -- 11.7 Application notes -- 11.8 Summary points -- Acknowledgments -- References.
|
650 |
|
0 |
|a Bioengineering -- Methodology.
|
650 |
|
0 |
|a Electronic books. -- local.
|
650 |
|
0 |
|a Microfabrication.
|
650 |
|
0 |
|a Microfluidics.
|
650 |
|
7 |
|a Microfabrication
|2 fast
|
650 |
|
7 |
|a Microfluidics
|2 fast
|
856 |
4 |
0 |
|u https://colorado.idm.oclc.org/login?url=https://ieeexplore.ieee.org/servlet/opac?bknumber=9100662
|z Full Text (via IEEE)
|
915 |
|
|
|a M
|
956 |
|
|
|a Artech House eBooks
|
956 |
|
|
|b IEEE Xplore Artech House eBooks Library
|
998 |
|
|
|b New collection ieee.artechbooks
|
994 |
|
|
|a 92
|b COD
|
999 |
f |
f |
|s 0c2ff0b1-1c40-499a-9ed1-fb7fd388c6b0
|i 4b17ba46-8501-4a59-9b38-0dd91fc4f0a5
|
952 |
f |
f |
|p Can circulate
|a University of Colorado Boulder
|b Online
|c Online
|d Online
|e TJ853.4.M53 ǂb M48 2010eb
|h Library of Congress classification
|i web
|