Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics.

Saved in:
Bibliographic Details
Online Access: Full Text (via IEEE)
Main Author: Zahn
Format: eBook
Language:English
Published: Boston, MA : Artech House, 2009.
Subjects:

MARC

LEADER 00000cam a2200000Ma 4500
001 in00000244283
006 m o d
007 cr |||||||||||
008 170905s2009 mau o 000 0 eng d
005 20240813212711.3
035 |a (OCoLC)ieee1026991636 
040 |a STF  |b eng  |c STF  |d OCLCQ  |d UUM  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d ESU  |d OCLCO 
020 |a 9781596934016 
020 |a 1596934018 
035 |a (OCoLC)1026991636 
050 4 |a TJ853.4.M53 ǂb M48 2010eb 
049 |a GWRE 
100 1 |a Zahn. 
245 1 0 |a Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics. 
260 |a Boston, MA :  |b Artech House,  |c 2009. 
300 |a 1 online resource (379 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
520 3 |a Written and edited by recognized experts in the field, the new Artech House Methods in Bioengineering series offers detailed guidance on authoritative methods for addressing specific bioengineering challenges. Offering a highly practical presentation of each topic, each book provides research engineers, scientists, and students with step-by-step procedures, clear examples, and effective ways to overcome problems that may be encountered. This unique volume presents leading-edge microfluidics methods used to handle, manipulate, and analyze cells, particles biological components (e.g., proteins and DNA) for microdiagnostics.  |c Publisher abstract. 
588 0 |a Publisher's metadata. 
505 0 |a Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics -- Contents -- Preface -- Chapter 1 Microfabrication Techniques for Microfluidic Devices -- 1.1 Introduction to microsystems and microfluidic devices -- 1.2 Microfluidic systems: fabrication techniques -- 1.3 Transfer processes -- 1.3.1 Photolithography -- 1.3.2 Molding -- 1.4 Additive processes -- 1.4.1 Growth of SiO2 -- 1.4.2 Deposition techniques -- 1.5 Subtractive techniques -- 1.5.1 Etching -- 1.5.2 Chemical-mechanical polishing and planarization -- 1.6 Bonding processes -- 1.6.1 Lamination -- 1.6.2 Wafer bonding methods -- 1.7 Sacrificial layer techniques -- 1.8 Packaging processes -- 1.8.1 Dicing -- 1.8.2 Electrical interconnection and wire bonding -- 1.8.3 Fluidic interconnection in microfluidic systems -- 1.9 Materials for microfluidic and bio-MEMS applications -- 1.9.1 Glass, pyrex, and quartz -- 1.9.2 Silicon -- 1.9.3 Elastomers -- 1.9.4 Polydimethylsiloxane -- 1.9.5 Epoxy -- 1.9.6 SU-8 thick resists -- 1.9.7 Thick positive resists -- 1.9.8 Benzocyclobutene -- 1.9.9 Polyimides -- 1.9.10 Polycarbonate -- 1.9.11 Polytetrafluoroethylene -- 1.10 Troubleshooting table -- 1.11 Summary -- References -- Chapter 2 Micropumping and Microvalving -- 2.1 Introduction -- 2.2 Actuators for micropumps and microvalves -- 2.2.1 Pneumatic actuators -- 2.2.2 Thermopneumatic actuators -- 2.2.3 Solid-expansion actuators -- 2.2.4 Bimetallic actuators -- 2.2.5 Shape-memory alloy actuators -- 2.2.6 Piezoelectric actuators -- 2.2.7 Electrostatic actuators -- 2.2.8 Electromagnetic actuators -- 2.2.9 Electrochemical actuators -- 2.2.10 Chemical actuators -- 2.2.11 Capillary-force actuators -- 2.3 Micropumps -- 2.3.1 Mechanical pump -- 2.3.2 Nonmechanical pump -- 2.4 Microvalves -- 2.4.1 Mechanical valve -- 2.4.2 Nonmechanical valve -- 2.5 Outlook -- 2.6 Troubleshooting -- 2.7 Summary points. 
505 8 |a 5.4.5 Hydrophobic coating -- 5.5 Instrumentation and system assembly -- 5.5.1 Detection setup -- 5.5.2 System assembly -- 5.6 Methods -- 5.6.1 Automated glucose assays on-chip -- 5.6.2 Magnetic bead manipulation on-chip -- 5.6.3 Droplet-based immunoassay -- 5.7 Results and discussion -- 5.7.1 Testing of two layer electrowetting device -- 5.7.2 Automated glucose assay on-chip -- 5.7.3 Optimization of magnetic bead washing -- 5.8 Method challenges -- 5.9 Summary points -- Acknowledgments -- References -- Chapter 6 Dielectrophoresis for Particle and Cell Manipulations -- 6.1 Introduction: physical origins of DEP -- 6.2 Introduction: theory of dielectrophoresis -- 6.2.1 Limiting assumptions and typical experimental conditions -- 6.3 Materials: equipment for generating electric field nonuniformities and DEP forces -- 6.3.1 Electric field frequency -- 6.3.2 Electric field phase -- 6.3.3 Geometry -- 6.4 Methods: data acquisition, anticipated results, and interpretation -- 6.4.1 General considerations for dielectrophoretic devices -- 6.4.2 Electrode-based dielectrophoresis -- 6.4.3 Insulative dielectrophoresis -- 6.4.4 Summary of experimental parameters -- 6.5 Troubleshooting -- 6.6 Application notes -- 6.6.1 Particle trapping -- 6.6.2 Particle sorting and fractionation -- 6.6.3 Single-particle trapping -- References -- Chapter 7 Optical Microfluidics for Molecular Diagnostics -- 7.1 Introduction -- 7.2 Integrated optical systems -- 7.2.1 Absorbance detection -- 7.2.2 Fluorescence detection -- 7.2.3 Chemiluminescence detection -- 7.2.4 Interferometric detection -- 7.2.5 Surface plasmon resonance detection -- 7.3 Nanoengineered optical probes -- 7.3.1 Quantum dots -- 7.3.2 Up-converting phosphors -- 7.3.3 Silver-enhanced nanoparticle labeling -- 7.3.4 Localized surface plasmon resonance -- 7.3.5 SPR with nanohole gratings. 
505 8 |a 7.3.6 Surface-enhanced Raman spectroscopy -- 7.4 Conclusions -- 7.5 Summary -- Acknowledgments -- References -- Chapter 8 Neutrophil Chemotaxis Assay from Whole Blood Samples -- 8.1 Introduction -- 8.2 Device design -- 8.3 Materials -- 8.4 Methods -- 8.4.1 Device fabrication -- 8.4.2 Surface treatment -- 8.4.3 Chemotaxis assay -- 8.5 Data acquisition -- 8.6 Troubleshooting tips -- Appendix 8A -- References -- Chapter 9 Microfluidic Immunoassays -- 9.1 Introduction -- 9.1.1 Microfluidic immunoassay design/operation considerations -- 9.1.2 Example microfluidic immunoassay formats -- 9.2 Materials -- 9.2.1 Microfluidic device -- 9.2.2 Pumps and interconnections -- 9.3 Methods -- 9.3.1 Fabrication of flowcells -- 9.3.2 Sample and reagent delivery -- 9.4 Data acquisition and results -- 9.4.1 FMIA -- 9.4.2 CGIA -- 9.5 Discussion -- 9.5.1 FMIA -- 9.5.2 CGIA -- 9.5.3 Challenges of analyzing complex samples -- Acknowledgments -- References -- Chapter 10 Droplet Based Microfluidics by Shear-Driven Microemulsions -- 10.1 Introduction -- 10.1.1 Advantages of droplet-based microfluidics -- 10.2 Biomedical applications of droplet microfluidics -- 10.2.1 Bioassays -- 10.2.2 Particle formation -- 10.2.3 Therapeutic delivery -- 10.3 Materials -- 10.4 Methods -- 10.4.1 Channel surface modification -- 10.4.2 Hydrophilic surface treatment -- 10.4.3 Hydrophobic surface treatment -- 10.4.4 Solution preparation -- 10.4.5 Generation of droplets -- 10.5 Data acquisition -- 10.5.1 Droplet arrays -- 10.5.2 High-speed cameras -- 10.5.3 Conventional imaging methods -- 10.6 Discussion and commentary -- Acknowledgments -- References -- Chapter 11 MicroFACS System -- 11.1 Introduction -- 11.2 Materials -- 11.3 Methods -- 11.4 Results -- 11.5 Discussion of pitfalls -- 11.6 Statistical analysis -- 11.7 Application notes -- 11.8 Summary points -- Acknowledgments -- References. 
650 0 |a Bioengineering -- Methodology. 
650 0 |a Electronic books. -- local. 
650 0 |a Microfabrication. 
650 0 |a Microfluidics. 
650 7 |a Microfabrication  |2 fast 
650 7 |a Microfluidics  |2 fast 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://ieeexplore.ieee.org/servlet/opac?bknumber=9100662  |z Full Text (via IEEE) 
915 |a M 
956 |a Artech House eBooks 
956 |b IEEE Xplore Artech House eBooks Library 
998 |b New collection ieee.artechbooks 
994 |a 92  |b COD 
999 f f |s 0c2ff0b1-1c40-499a-9ed1-fb7fd388c6b0  |i 4b17ba46-8501-4a59-9b38-0dd91fc4f0a5 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e TJ853.4.M53 ǂb M48 2010eb   |h Library of Congress classification  |i web