Quipu
Saved in:
Online Access: |
Full Text (via ProQuest) |
---|---|
Main Author: | |
Other Authors: | , |
Format: | eBook |
Language: | English |
Published: |
Singapore :
World Scientific Publishing Company,
2024.
|
Series: | K & E series on knots and everything.
|
Table of Contents:
- Intro
- Contents
- About the Authors
- Acknowledgments
- 1. Introduction
- 2. Background and Motivating Examples
- 2.1. Elements of group theory
- 2.1.1. Permutations
- 2.1.2. Permutation representations
- 2.1.3. Short exact sequences
- 2.2. (Z/2)2 and Z/4
- 2.3. (mod n)-quipu
- 2.3. (mod n)-quipu
- 2.3.1. Application: Z/n × Z/n and Z/(n2)
- 2.3.2. Fanciful application: The circle of fifths
- 2.3.3. Application: Dihedral groups
- 3. Matrix Descriptions
- 3.1. Overview
- 3.2. The 8-element dihedral group revisited
- 3.3. (mod 2)-quipu that describe a 24-element group
- 3.3.1. Actions upon the cube and an embedded tetrahedron
- 3.4. Signed permutation
- 3.4.1. Signs of permutations and determinant
- 3.4.2. The group and a matrix representation
- 3.4.3. Subgroups
- 3.4.4. The 4-dimensional cube
- 3.5. Semi-direct products
- 3.6. Proof of Theorem 1
- 3.6.1. An alternative view of the dihedral group D8
- 3.6.2. An alternative view of the alternating group A4
- 4. The 3-Dimensional Sphere is a Group
- 4.1. Balls and their boundaries
- 4.1.1. Boundaries of cubes
- 4.1.2. Boundaries of simplices
- 4.1.3. Taking the boundary twice
- 4.2. The unit vectors i, j, and k
- 4.2.1. The quaternions: Part 1
- 4.2.2. Stereograph projection
- 4.2.3. The quaternions: Part 2
- 4.2.4. Matrix representations
- 4.3. The dicyclic groups
- 4.3.1. Revisiting the dihedral group
- 4.3.2. Projection from S3 to the 3-dimensional rotation group
- 4.3.3. The dicyclic group as a subset of the 3-sphere
- 4.3.4. Matrices that correspond to the 2-strings-with-quipu representations
- 4.3.5. The dicyclic group Dic2 is the group of quaternions Q8
- 4.3.6. Describing the projections from the dicyclic groups to the dihedral groups
- 4.4. Culmination and anticipation
- 5. Extensions of the Permutation Group Σ4
- 5.1. The symmetric group Σ4
- 5.1.1. The cosets of the dihedral group
- 5.2. The group GL2(Z/3)
- 5.2.1. 4-strings-with-(mod 2)-quipu
- 5.2.2. The semi-dihedral group
- 5.2.3. A 3-strings representation of GL2(Z/3)
- 5.2.4. Peculiar correspondences
- 5.3. The group SL2(Z/4)
- 5.3.1. A 3-strings representation of SL2(Z/4)
- 5.3.2. The 2-Sylow subgroup of SL2(Z/4)
- 5.3.3. An alternative projection to Σ4
- 5.4. The binary octahedral group
- 5.4.1. Cosets of A = (1, a, a2,−1,−a,−a2)
- 5.4.2. Cosets of the dicyclic group Dic4 of order 16
- 5.4.3. Section summary
- 6. The Binary Tetrahedral Group
- 6.1. The binary tetrahedral group as a subgroup of S3
- 6.2. Correspondences among representations
- 6.2.1. Cosets of A = 〈a : a6 = 1〉
- 6.2.2. The subgroup Q8 of A4
- 7. The Binary Icosahedral Group
- 7.1. Powers of t
- 7.1.1. Cosets of T
- 7.2. Cosets of A
- 8. Computing Group 2-cocycles
- 8.1. Set-theoretic sections
- 8.1.1. Classifying seseqs
- 8.1.2. A geometric interpretation
- 8.2. Example 1. The symmetric group Σ4
- 8.3. Example 2. The group SL2(Z/4)