Quipu

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Bae, Yongju
Other Authors: Carter, J Scott, Kim, Byeorhi
Format: eBook
Language:English
Published: Singapore : World Scientific Publishing Company, 2024.
Series:K & E series on knots and everything.
Table of Contents:
  • Intro
  • Contents
  • About the Authors
  • Acknowledgments
  • 1. Introduction
  • 2. Background and Motivating Examples
  • 2.1. Elements of group theory
  • 2.1.1. Permutations
  • 2.1.2. Permutation representations
  • 2.1.3. Short exact sequences
  • 2.2. (Z/2)2 and Z/4
  • 2.3. (mod n)-quipu
  • 2.3. (mod n)-quipu
  • 2.3.1. Application: Z/n × Z/n and Z/(n2)
  • 2.3.2. Fanciful application: The circle of fifths
  • 2.3.3. Application: Dihedral groups
  • 3. Matrix Descriptions
  • 3.1. Overview
  • 3.2. The 8-element dihedral group revisited
  • 3.3. (mod 2)-quipu that describe a 24-element group
  • 3.3.1. Actions upon the cube and an embedded tetrahedron
  • 3.4. Signed permutation
  • 3.4.1. Signs of permutations and determinant
  • 3.4.2. The group and a matrix representation
  • 3.4.3. Subgroups
  • 3.4.4. The 4-dimensional cube
  • 3.5. Semi-direct products
  • 3.6. Proof of Theorem 1
  • 3.6.1. An alternative view of the dihedral group D8
  • 3.6.2. An alternative view of the alternating group A4
  • 4. The 3-Dimensional Sphere is a Group
  • 4.1. Balls and their boundaries
  • 4.1.1. Boundaries of cubes
  • 4.1.2. Boundaries of simplices
  • 4.1.3. Taking the boundary twice
  • 4.2. The unit vectors i, j, and k
  • 4.2.1. The quaternions: Part 1
  • 4.2.2. Stereograph projection
  • 4.2.3. The quaternions: Part 2
  • 4.2.4. Matrix representations
  • 4.3. The dicyclic groups
  • 4.3.1. Revisiting the dihedral group
  • 4.3.2. Projection from S3 to the 3-dimensional rotation group
  • 4.3.3. The dicyclic group as a subset of the 3-sphere
  • 4.3.4. Matrices that correspond to the 2-strings-with-quipu representations
  • 4.3.5. The dicyclic group Dic2 is the group of quaternions Q8
  • 4.3.6. Describing the projections from the dicyclic groups to the dihedral groups
  • 4.4. Culmination and anticipation
  • 5. Extensions of the Permutation Group Σ4
  • 5.1. The symmetric group Σ4
  • 5.1.1. The cosets of the dihedral group
  • 5.2. The group GL2(Z/3)
  • 5.2.1. 4-strings-with-(mod 2)-quipu
  • 5.2.2. The semi-dihedral group
  • 5.2.3. A 3-strings representation of GL2(Z/3)
  • 5.2.4. Peculiar correspondences
  • 5.3. The group SL2(Z/4)
  • 5.3.1. A 3-strings representation of SL2(Z/4)
  • 5.3.2. The 2-Sylow subgroup of SL2(Z/4)
  • 5.3.3. An alternative projection to Σ4
  • 5.4. The binary octahedral group
  • 5.4.1. Cosets of A = (1, a, a2,−1,−a,−a2)
  • 5.4.2. Cosets of the dicyclic group Dic4 of order 16
  • 5.4.3. Section summary
  • 6. The Binary Tetrahedral Group
  • 6.1. The binary tetrahedral group as a subgroup of S3
  • 6.2. Correspondences among representations
  • 6.2.1. Cosets of A = 〈a : a6 = 1〉
  • 6.2.2. The subgroup Q8 of A4
  • 7. The Binary Icosahedral Group
  • 7.1. Powers of t
  • 7.1.1. Cosets of T
  • 7.2. Cosets of A
  • 8. Computing Group 2-cocycles
  • 8.1. Set-theoretic sections
  • 8.1.1. Classifying seseqs
  • 8.1.2. A geometric interpretation
  • 8.2. Example 1. The symmetric group Σ4
  • 8.3. Example 2. The group SL2(Z/4)