Predictive analytics for marketers : using data mining for business advantage / Barry Leventhal.

Understand how to apply predictive analytics to better manage a company and its resources more effectively, with this revolutionary book for marketing professionals.

Saved in:
Bibliographic Details
Online Access: Full Text (via EBSCO)
Main Author: Leventhal, Barry (Author)
Format: Electronic eBook
Language:English
Published: London ; New York : Kogan Page, 2018.
Subjects:

MARC

LEADER 00000cam a22000008i 4500
001 b10108593
006 m o d
007 cr |||||||||||
008 171219t20182018enka ob 001 0 eng
005 20240520142748.9
010 |a  2017060508 
015 |a GBB7N4730  |2 bnb 
016 7 |a 018638075  |2 Uk 
020 |a 9780749479947  |q (PDF ebook) 
020 |a 0749479949  |q (electronic bk.) 
020 |a 9780749479930  |q (paperback ;  |q alk. paper) 
020 |a 0749479930  |q (paperback ;  |q alk. paper) 
029 1 |a AU@  |b 000062624768 
029 1 |a UKMGB  |b 018638075 
029 1 |a AU@  |b 000068970212 
035 |a (OCoLC)ebs1019845579dda 
035 |a (OCoLC)1019845579 
037 |a ebs1690586dda 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCO  |d N$T  |d YDX  |d EBLCP  |d OCLCF  |d UAB  |d NJR  |d OCLCQ  |d COO  |d INT  |d K6U  |d D6H  |d OCLCQ  |d OSU  |d OCLCQ  |d S9I  |d UKMGB  |d KOGAN  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
042 |a pcc 
049 |a GWRE 
050 1 0 |a HF5415.2  |b .L483 2018 
100 1 |a Leventhal, Barry,  |e author. 
245 1 0 |a Predictive analytics for marketers :  |b using data mining for business advantage /  |c Barry Leventhal. 
263 |a 1802 
264 1 |a London ;  |a New York :  |b Kogan Page,  |c 2018. 
264 4 |c ©2018 
300 |a 1 online resource (xvi, 251 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Cover; Contents; About the author; Contributorsâ#x80;#x99; biographies; Foreword; Preface and acknowledgements; 01 How can predictive analytics help your business?; Introduction; What is predictive analytics?; The analytical model; â#x80;#x98;All models are wrong, but some are usefulâ#x80;#x99;; Two types of model â#x80;#x93; predictive and descriptive; The profitability seesaw; Applying predictive analytics to e-mail marketing; Making a difference â#x80;#x93; eight examples of useful models; Generating customer knowledge; Competing on analytics; Data protection and privacy issues; Conclusion; Notes. 
505 8 |a 02 Using data mining to build predictive modelsIntroduction; What is data mining?; Who are the stakeholders?; The data-mining process; Involvement of the stakeholders; The relationship between data mining, data science and statistics; Conclusion; 03 Managing the data for predictive analytics; Introduction; The roles of data; The useful data for predictive analytics; Data sources that can be leveraged; Having the right data; Types of data â#x80;#x93; structured and unstructured; Data quality checks â#x80;#x93; the data audit; Data preparation; Conclusion; 04 The analytical modelling toolkit; Introduction. 
505 8 |a Types of techniquesWidely used predictive models; Widely used descriptive methods; The Bayesian approach; Which is the right technique to use?; Combining models together; Conclusion; 05 Software solutions for predictive analytics; Introduction; The architecture required for data mining; Software for analytical modelling; Communicating models between development and deployment; Model management; Scalable analytics in the Cloud; Conclusion; 06 Predicting customer behaviour using analytical models; Introduction; Overview â#x80;#x93; building and deploying predictive models. 
505 8 |a Defining the business requirementsFraming the business problem; The timelines for model development and deployment; The sample size required; Preparing the analytic dataset; Building the model; Assessing model performance; Planning model deployment; From testing to implementation; Conclusion; 07 Predicting lifetimes â#x80;#x93; from customers to machines; Introduction; Importance of the customer lifecycle; Survival analysis applications; Key concepts of this technique; Describing customer lifetimes; Predicting survival times; Applications to customer management. 
505 8 |a Differences between survival and churn modelsApplications to asset management; Conclusion; 08 How to build a customer segmentation; Introduction; Principles of segmentation; Potential business applications; Steps in developing and implementing customer segmentation; Some useful segmentation approaches; Conclusion; 09 Accounts, baskets, citizens or businesses â#x80;#x93; applying predictive analytics in various sectors; Introduction; Applications in retail banking; Analytics in mobile telecoms; Customer analysis in retail; Use of advanced analytics in the public sector; Analysing businesses. 
520 |a Understand how to apply predictive analytics to better manage a company and its resources more effectively, with this revolutionary book for marketing professionals. 
588 0 |a Print version record. 
650 0 |a Marketing research. 
650 0 |a Consumer behavior. 
650 0 |a Data mining. 
650 7 |a Consumer behavior  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Marketing research  |2 fast 
758 |i has work:  |a Predictive analytics for marketers (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGT9pmmMxpcQq6rkmjVGf3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Leventhal, Barry.  |t Predictive analytics for marketers.  |d London ; New York : Kogan Page, 2018  |z 9780749479930  |w (DLC) 2017050352 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&site=ehost-live&AN=1690586  |z Full Text (via EBSCO) 
915 |a 8 
956 |a EBSCO ebook collection PDA 
956 |b EBSCO PDA eBooks 
994 |a 92  |b COD 
998 |b Subsequent record output 
999 f f |i cc37f28b-769e-5f83-9a8e-47cad639f0f9  |s de6a3051-e0c3-5099-879d-f20ac55288b9 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e HF5415.2 .L483 2018  |h Library of Congress classification  |i web  |n 1