The Hodge-Laplacian : boundary value problems on Riemannian manifolds / Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor.
The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be partic...
Saved in:
Online Access: |
Full Text (via ProQuest) |
---|---|
Main Authors: | , , , |
Format: | eBook |
Language: | English |
Published: |
Berlin ; Boston :
De Gruyter,
2016.
|
Series: | De Gruyter studies in mathematics ;
Volume 64. |
Subjects: |
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | b10111357 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 161007s2016 gw ob 000 0 eng d | ||
005 | 20240703162835.9 | ||
010 | |a 2016033433 | ||
019 | |a 962814406 |a 964379058 |a 964536249 |a 965345367 |a 1055377137 |a 1066561053 |a 1081199891 |a 1228604645 |a 1259184626 | ||
020 | |a 3110484382 |q (ebk) | ||
020 | |a 9783110484380 | ||
020 | |a 9783110484397 | ||
020 | |a 3110484390 | ||
020 | |z 3110482665 | ||
020 | |z 3110483394 | ||
020 | |z 9783110482669 | ||
020 | |z 9783110483390 |q (PDF) | ||
024 | 7 | |a 10.1515/9783110484380 |2 doi | |
029 | 1 | |a AU@ |b 000066766401 | |
029 | 1 | |a CHBIS |b 010896443 | |
029 | 1 | |a CHVBK |b 483397008 | |
029 | 1 | |a DEBBG |b BV043867770 | |
029 | 1 | |a GBVCP |b 871510979 | |
035 | |a (OCoLC)ebqac960041744 | ||
035 | |a (OCoLC)960041744 |z (OCoLC)962814406 |z (OCoLC)964379058 |z (OCoLC)964536249 |z (OCoLC)965345367 |z (OCoLC)1055377137 |z (OCoLC)1066561053 |z (OCoLC)1081199891 |z (OCoLC)1228604645 |z (OCoLC)1259184626 | ||
037 | |a ebqac4707943 | ||
040 | |a IDEBK |b eng |e rda |e pn |c IDEBK |d EBLCP |d CN3GA |d OCLCO |d IDEBK |d YDX |d N$T |d DEBBG |d IXA |d OCLCQ |d OCLCO |d OCLCQ |d OTZ |d CUI |d HEBIS |d OCLCO |d OCLCQ |d STF |d DEGRU |d MERUC |d SNK |d DKU |d IGB |d D6H |d COCUF |d OCLCQ |d CUY |d LOA |d K6U |d ICG |d ZCU |d OCLCQ |d VTS |d VT2 |d U3W |d OCLCO |d WYU |d OCLCQ |d G3B |d LVT |d S8J |d S9I |d TKN |d LEAUB |d DKC |d OCLCQ |d OCLCA |d M8D |d UKAHL |d OCLCQ |d QGK |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
049 | |a GWRE | ||
050 | 4 | |a QA649 |b .M58 2016 | |
084 | |a 31B10 |a 31B25 |a 31C12 |a 35A01 |a 35B20 |a 35J08 |a 35J25 |a 35J55 |a 35J57 |a 35Q61 |a 35R01 |a 42B20 |a 42B25 |a 42B37 |a 45A05 |a 45B05 |a 45E05 |a 45F15 |a 45P05 |a 47B38 |a 47G10 |a 49Q15 |a 58A10 |a 58A12 |a 58A14 |a 58A15 |a 58A30 |a 58C35 |a 58J05 |a 58J32 |a 78A30 |2 msc | ||
084 | |a SK 540 |2 rvk |0 (DE-625)rvk/143245: | ||
100 | 1 | |a Mitrea, Dorina, |d 1965- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJpv7q38fV6GvpykF4MpT3 | |
245 | 1 | 4 | |a The Hodge-Laplacian : |b boundary value problems on Riemannian manifolds / |c Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor. |
264 | 1 | |a Berlin ; |a Boston : |b De Gruyter, |c 2016. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a volume |b nc |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a De Gruyter Studies in Mathematics, |x 0179-0986 ; |v Volume 64 | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface ; Contents ; 1 Introduction and Statement of Main Results ; 1.1 First Main Result: Absolute and Relative Boundary Conditions ; 1.2 Other Problems Involving Tangential and Normal Components of Harmonic Forms ; 1.3 Boundary Value Problems for Hodge-Dirac Operators; 1.4 Dirichlet, Neumann, Transmission, Poincaré, and Robin-Type Boundary Problems 1.5 Structure of the Monograph ; 2 Geometric Concepts and Tools ; 2.1 Differential Geometric Preliminaries ; 2.2 Elements of Geometric Measure Theory; 2.3 Sharp Integration by Parts Formulas for Differential Forms in Ahlfors Regular Domains 2.4 Tangential and Normal Differential Forms on Ahlfors Regular Sets ; 3 Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains; 3.1 A Fundamental Solution for the Hodge-Laplacian 3.2 Layer Potentials for the Hodge-Laplacian in the Hodge-de Rham Formalism ; 3.3 Fredholm Theory for Layer Potentials in the Hodge-de Rham Formalism ; 4 Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains; 4.1 The Definition and Mapping Properties of the Double Layer 4.2 The Double Layer on UR Subdomains of Smooth Manifolds ; 4.3 Compactness of the Double Layer on Regular SKT Domains ; 5 Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains. | |
504 | |a Includes bibliographical references. | ||
520 | |a The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex. | ||
546 | |a In English. | ||
650 | 0 | |a Riemannian manifolds. | |
650 | 0 | |a Boundary value problems. | |
650 | 7 | |a Boundary value problems |2 fast | |
650 | 7 | |a Riemannian manifolds |2 fast | |
700 | 1 | |a Mitrea, Irina, |e author. | |
700 | 1 | |a Mitrea, Marius, |e author. | |
700 | 1 | |a Taylor, Michael E., |d 1946- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJyWYxDqHd4PfggBBgYwYP | |
758 | |i has work: |a The Hodge-Laplacian (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG49fwkG9hKCrbHBckF3Qq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Mitrea, Dorina. |t Hodge-Laplacian. |d Berlin, De Guyter, 2016 |z 9783110482669 |z 3110482665 |w (DLC) 2016033433 |w (OCoLC)951452997 |
830 | 0 | |a De Gruyter studies in mathematics ; |v Volume 64. | |
856 | 4 | 0 | |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=4707943 |z Full Text (via ProQuest) |
915 | |a - | ||
956 | |a Ebook Central Academic Complete | ||
956 | |b Ebook Central Academic Complete | ||
994 | |a 92 |b COD | ||
998 | |b WorldCat record encoding level change | ||
999 | f | f | |i 23fe6660-aa56-55bc-b74d-b5c92884e168 |s 408cfbba-9cb8-5e54-9174-8d48ebfb08bc |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e QA649 .M58 2016 |h Library of Congress classification |i web |n 1 |