Nonlinear kalman filtering for multi-sensor navigation of unmanned aerial vehicles : application to guidance and navigation of unmanned aerial vehicles flying in a complex environment / Jean-Philippe Condomines.
Nonlinear Kalman Filtering for Multi-Sensor Navigation of Unmanned Aerial Vehicles covers state estimation development approaches for Mini-UAV. The book focuses on Kalman filtering technics for UAV design, proposing a new design methodology and case study related to inertial navigation systems for d...
Saved in:
Online Access: |
Full Text (via Knovel) |
---|---|
Main Author: | |
Format: | eBook |
Language: | English |
Published: |
Amsterdam :
Elsevier,
2018.
|
Subjects: |
MARC
LEADER | 00000cam a2200000xi 4500 | ||
---|---|---|---|
001 | b10808608 | ||
003 | CoU | ||
005 | 20191011050231.9 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 181119s2018 ne a ob 001 0 eng d | ||
020 | |a 9780081027448 |q (electronic bk.) | ||
020 | |a 0081027443 |q (electronic bk.) | ||
020 | |a 9781785482854 |q (electronic bk.) | ||
020 | |a 1785482858 |q (electronic bk.) | ||
035 | |a (OCoLC)kno1066247979 | ||
035 | |a (OCoLC)1066247979 | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d OPELS |d OCLCF |d UKMGB |d YDX |d CNCGM |d STF |d MERER |d OCLCQ |d U3W |d ESU |d WAU | ||
049 | |a GWRE | ||
050 | 4 | |a TL685.35 | |
066 | |c (S | ||
100 | 1 | |a Condomines, Jean-Philippe, |d 1987- |e author. |0 http://id.loc.gov/authorities/names/no2019035921. | |
245 | 1 | 0 | |a Nonlinear kalman filtering for multi-sensor navigation of unmanned aerial vehicles : |b application to guidance and navigation of unmanned aerial vehicles flying in a complex environment / |c Jean-Philippe Condomines. |
264 | 1 | |a Amsterdam : |b Elsevier, |c 2018. | |
300 | |a 1 online resource : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent. | ||
337 | |a computer |b c |2 rdamedia. | ||
338 | |a online resource |b cr |2 rdacarrier. | ||
504 | |a Includes bibliographical references and index. | ||
520 | |a Nonlinear Kalman Filtering for Multi-Sensor Navigation of Unmanned Aerial Vehicles covers state estimation development approaches for Mini-UAV. The book focuses on Kalman filtering technics for UAV design, proposing a new design methodology and case study related to inertial navigation systems for drones. Both simulation and real experiment results are presented, thus showing new and promising perspectives. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Drone aircraft. |0 http://id.loc.gov/authorities/subjects/sh85039623. | |
650 | 0 | |a Drone aircraft |x Control systems. |0 http://id.loc.gov/authorities/subjects/sh2002000348. | |
650 | 0 | |a Kalman filtering. |0 http://id.loc.gov/authorities/subjects/sh85071360. | |
650 | 7 | |a Drone aircraft. |2 fast |0 (OCoLC)fst00898349. | |
650 | 7 | |a Drone aircraft |x Control systems. |2 fast |0 (OCoLC)fst00898350. | |
650 | 7 | |a Kalman filtering. |2 fast |0 (OCoLC)fst00985838. | |
776 | 0 | 8 | |i Print version: |a Condomines, Jean-Philippe. |t Nonlinear kalman filter for multi-sensor navigation of unmanned aerial vehicle. |d Amsterdam : Elsevier, 2018 |z 9781785482854 |w (OCoLC)1064439123. |
856 | 4 | 0 | |u https://colorado.idm.oclc.org/login?url=https://app.knovel.com/hotlink/toc/id:kpNKFMSNUF/nonlinear-kalman-filtering?kpromoter=marc |z Full Text (via Knovel) |
880 | 0 | |6 505-00/(S |a <p>1. Introduction to Aerial Robotics 2. The State of the Art 3. Inertial Navigation Models 4. The IUKF and π-IUKF Algorithms 5. Methodological Validation, Experiments and Results </p> | |
907 | |a .b108086082 |b 03-19-20 |c 10-15-19 | ||
998 | |a web |b 10-31-19 |c b |d b |e - |f eng |g ne |h 0 |i 1 | ||
907 | |a .b108086082 |b 11-04-19 |c 10-15-19 | ||
944 | |a MARS - RDA ENRICHED | ||
915 | |a I | ||
956 | |a Knovel | ||
956 | |b ACADEMIC - Aerospace & Radar Technology | ||
999 | f | f | |i 67814747-7359-5cd9-8bc0-d9f5c80a9cde |s 89da3e7b-f589-551d-bf15-65193355dd7a |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e TL685.35 |h Library of Congress classification |i web |n 1 |