Asymptotic analysis and perturbation theory [electronic resource] / William Paulsen.

Beneficial to both beginning students and researchers, Asymptotic Analysis and Perturbation Theory immediately introduces asymptotic notation and then applies this tool to familiar problems, including limits, inverse functions, and integrals. Suitable for those who have completed the standard calcul...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Taylor & Francis)
Main Author: Paulsen, William
Format: Electronic eBook
Language:English
Published: Boca Raton : Taylor & Francis, 2013.
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b11594253
003 CoU
005 20221118052825.0
006 m o d
007 cr |||||||||||
008 130812s2013 flu ob 001 0 eng d
019 |a 852899175  |a 854520658  |a 857078770  |a 858015285  |a 988453173  |a 1066024281  |a 1152975654 
020 |a 1466515120  |q (electronic bk.) 
020 |a 9781466515123  |q (electronic bk.) 
020 |z 9781466515116  |q (hardcover ;  |q alk. paper) 
020 |z 1466515112  |q (hardcover ;  |q alk. paper) 
035 |a (OCoLC)tfe895742519 
035 |a (OCoLC)895742519  |z (OCoLC)852899175  |z (OCoLC)854520658  |z (OCoLC)857078770  |z (OCoLC)858015285  |z (OCoLC)988453173  |z (OCoLC)1066024281  |z (OCoLC)1152975654 
037 |a tfe9780429189531 
040 |a CN3GA  |b eng  |e pn  |c CN3GA  |d OCLCO  |d YDXCP  |d OCLCQ  |d OCLCF  |d EBLCP  |d DEBSZ  |d OCLCQ  |d Z5A  |d N$T  |d UIU  |d LRU  |d CRCPR  |d E7B  |d DEBBG  |d MOR  |d MERER  |d CUS  |d MERUC  |d OCLCQ  |d WYU  |d YDX  |d UKAHL  |d OCLCQ  |d VT2  |d K6U  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA871  |b .P38 2013 
100 1 |a Paulsen, William.  |0 http://id.loc.gov/authorities/names/n2009033212  |1 http://isni.org/isni/0000000060242790. 
245 1 0 |a Asymptotic analysis and perturbation theory  |h [electronic resource] /  |c William Paulsen. 
264 1 |a Boca Raton :  |b Taylor & Francis,  |c 2013. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a "A CRC title." 
504 |a Includes bibliographical references and index. 
505 0 0 |g 1.  |t Introduction to Asymptotics --  |g 1.1.  |t Basic Definitions --  |g 1.1.1. Definition of ̃ and <<-  |g 1.1.2.  |t Hierarchy of Functions --  |g 1.1.3.  |t Big O and Little o Notation --  |g 1.2.  |t Limits via Asymptotics --  |g 1.3.  |t Asymptotic Series --  |g 1.4.  |t Inverse Functions --  |g 1.4.1.  |t Reversion of Series  |g 1.5.  |t Dominant Balance --  |g 2.  |t Asymptotics of Integrals --  |g 2.1.  |t Integrating Taylor Series --  |g 2.2.  |t Repeated Integration by Parts  |g 2.2.1.  |t Optimal asymptotic approximation --  |g 2.3.  |t Laplace's Method --  |g 2.3.1.  |t Properties of IK (x) --  |g 2.3.2.  |t Watson's Lemma --  |g 2.4.  |t Review of Complex Numbers --  |g 2.4.1.  |t Analytic Functions --  |g 2.4.2.  |t Contour Integration --  |g 2.4.3.  |t Gevrey Asymptotics --  |g 2.4.4.  |t Asymptotics for Oscillatory Functions --  |g 2.5.  |t Method of Stationary Phase --  |g 2.6.  |t Method of Steepest Descents --  |g 2.6.1.  |t Saddle Points --  |g 3.  |t Speeding Up Convergence --  |g 3.1.  |t Shanks Transformation --  |g 3.1.1.  |t Generalized Shanks Transformation  |g 3.2. Richardson Extrapolation --  |g 3.2.1.  |t Generalized Richardson Extrapolation --  |g 3.3. Euler Summation --  |g 3.4.  |t Borel Summation --  |g 3.4.1.  |t Generalized Borel Summation --  |g 3.4.2.  |t Stieltjes Series --  |g 3.5.  |t Continued Fractions --  |g 3.6.  |t Pade Approximants --  |g 3.6.1.  |t Two-point Pade --  |g 4.  |t Differential Equations --  |g 4.1.  |t Classification of Differential Equations --  |g 4.1.1.  |t Linear vs. Non-Linear --  |g 4.1.2.  |t Homogeneous vs. Inhomogeneous --  |g 4.1.3.  |t Initial Conditions vs. Boundary Conditions --  |g 4.1.4.  |t Regular Singular Points vs. Irregular Singular Points --  |g 4.2.  |t First Order Equations --  |g 4.2.1.  |t Separable Equations --  |g 4.2.2. First Line Lincar Equations --  |g 4.3.  |t Taylor Series Solutions --  |g 4.4.  |t Frobenius Method --  |g 5.  |t Asymptotic Series Solutions for Differential Equations --  |g 5.1.  |t Behavior for Irregular Singular Points  |g 5.2.  |t Full Asymptotic Expansion --  |g 5.3.  |t Local Analysis of Inhomogeneous Equations --  |g 5.3.1.  |t Variation of Parameters --  |g 5.4.  |t Local Analysis for Non-linear Equations --  |g 6.  |t Difference Equations --  |g 6.1.  |t Classification of Difference Equations --  |g 6.1.1.  |t Anti-differences --  |g 6.1.2.  |t Regular and Irregular Singular Points  |g 6.2. First Order Linear Equations -- 6.2.1.  |t Solving General First Order Linear Equations --  |g 6.2.2.  |t The Digamma Function --  |g 6.3. Analysis of Linear Differential Equations --  |g 6.3.1. Full Stirling Series --  |g 6.3.2.  |t Taylor Series Solution --  |g 6.4. The Euler-Maclaurin Formula --  |g 6.4.1.  |t The Bernoulli Numbers --  |g 6.4.2.  |t Applications of the Euler-Maclaurin Formula --  |g 6.5.  |t Taylor-like and Frobenius-like Series Expansions --  |g 7.  |t Perturbation Theory --  |g 7.1.  |t Introduction to Perturbation Theory --  |g 7.2.  |t Regular Perturbation for Differential Equations --  |g 7.3.  |t Singular Perturbation for Differential Equations --  |g 7.4.  |t Asymptotic Matching --  |g 7.4.1.  |t Van Dyke Method --  |g 7.4.2.  |t Dealing with Logarithmic Terms --  |g 7.4.3.  |t Multiple Boundary Layers --  |g 8.  |t WKBJ Theory --  |g 8.1.  |t The Exponential Approximation --  |g 8.2.  |t Region of Validity --  |g 8.3.  |t Turning Points --  |g 8.3.1.  |t One Simple Root Turning Point Problem --  |g 8.3.2.  |t Parabolic Turning Point Problems --  |g 8.3.3.  |t The Two-Turn Point Schrodinger Equation --  |g 9.  |t Multiple-Scale Analysis --  |g 9.1.  |t Strained Coordinates Method (Poincare-Lindstedt) --  |g 9.2.  |t The Multiple-Scale Procedure --  |g 9.3. Two-Variable Expansion Method. 
505 0 |a Front Cover; Contents; List of Figures; List of Tables; Preface; Acknowledgments; About the Author; Symbol Description; Chapter 1 Introduction to Asymptotics; Chapter 2 Asymptotics of Integrals; Chapter 3 Speeding Up Convergence; Chapter 4 Differential Equations; Chapter 5 Asymptotic Series Solutions for Differential Equation; Chapter 6 Difference Equations; Chapter 7 Perturbation Theory; Chapter 8 WKBJ Theory; Chapter 9 Multiple-Scale Analysis; Guide to the Special Functions; Answers to Odd-NumberedProblems; Bibliography; Back Cover. 
520 |a Beneficial to both beginning students and researchers, Asymptotic Analysis and Perturbation Theory immediately introduces asymptotic notation and then applies this tool to familiar problems, including limits, inverse functions, and integrals. Suitable for those who have completed the standard calculus sequence, the book assumes no prior knowledge of differential equations. It explains the exact solution of only the simplest differential equations, such as first-order linear and separable equations. With varying levels of problems in each section, this self-contained text makes the difficult su. 
588 0 |a Print version record. 
650 0 |a Perturbation (Mathematics)  |v Textbooks. 
650 0 |a Differential equations  |x Asymptotic theory  |v Textbooks. 
650 7 |a Differential equations  |x Asymptotic theory.  |2 fast  |0 (OCoLC)fst00893447. 
650 7 |a Perturbation (Mathematics)  |2 fast  |0 (OCoLC)fst01058905. 
655 7 |a Textbooks.  |2 fast  |0 (OCoLC)fst01423863. 
776 0 8 |i Print version:  |a Paulsen, William.  |t Asymptotic analysis and perturbation theory.  |z 9781466515116  |z 1466515112  |w (DLC) 2013019702. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9780429189531  |z Full Text (via Taylor & Francis) 
907 |a .b115942531  |b 12-05-22  |c 01-22-21 
998 |a web  |b 11-30-22  |c b  |d b   |e -  |f eng  |g flu  |h 0  |i 1 
907 |a .b115942531  |b 12-05-22  |c 01-22-21 
944 |a MARS - RDA ENRICHED 
915 |a - 
956 |a Taylor & Francis Ebooks 
956 |b Taylor & Francis All eBooks 
999 f f |i 4106074c-dda1-5e20-892d-3a0095a1a42a  |s 86d450c9-ea9c-5a6e-a3fe-107dc734f219 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA871 .P38 2013  |h Library of Congress classification  |i web  |n 1