Troubleshooting Python deep learning / Jakub Konczyk.

Go through curated issues that many developers face when building their deep learning models. Discover the most efficient techniques to overcome classification problems in CNN. Resolve issues that are related to the CNN architecture, accuracy, input, and output. Work with LSTM, which is a part of RN...

Full description

Saved in:
Bibliographic Details
Online Access: Streaming Video (via Alexander Street Press)
Main Author: Konczyk, Jakub (Author, Speaker)
Format: Video
Language:English
Published: Birmingham, England : PACKT Publishing, 2019.
Subjects:

MARC

LEADER 00000ngm a22000003i 4500
001 b11942353
003 CoU
005 20200402092951.0
006 m o c
007 vz czazu|
007 cr cna||||||||
008 200402s2019 enk183 e |o v|eng d
020 |z 9781788998192 
024 8 |a ASP4740628/marc 
035 |a (VaAlASP)asp99239584700971 
035 |a (OCoLC)1126148420 
035 |a (VaAlASP)ASP4740628/marc 
040 |a VaAlASP  |b eng  |e rda  |c VaAlASP 
245 0 0 |a Troubleshooting Python deep learning /  |c Jakub Konczyk. 
264 1 |a Birmingham, England :  |b PACKT Publishing,  |c 2019. 
300 |a 1 online resource (183 minutes) 
306 |a 030202. 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
347 |a video file  |2 rda. 
500 |a Title from resource description page (viewed April 02, 2020) 
511 0 |a Presenter: Jakub Konczyk. 
520 |a Go through curated issues that many developers face when building their deep learning models. Discover the most efficient techniques to overcome classification problems in CNN. Resolve issues that are related to the CNN architecture, accuracy, input, and output. Work with LSTM, which is a part of RNN, and deal with the most efficient part of text problems. Discover how to solve the most popular problems from architecture to input and output. Implement the most usable libraries, scikit-learn and NumPy, to resolve the major problems arising from your Deep Learning models. About: Building Deep Learning models with Python is a strenuous task, and there are chances of getting stuck on specific tasks. When that happens, you usually end up searching for solutions and need to manually look for ways to resolve these problems. This wastes both time and effort, and may also lead to reduced performance of your Deep Learning system. After carefully analyzing the most popular errors or problems that arise while working on Deep Learning models, we have identified the most usable models used for classification in this course and provided practical yet unique solutions to each problem that are easy to understand and implement. You can either follow the entire course or directly jump into the section that covers a specific problem you're facing. Some of the common yet important issues we cover include errors while building and training Deep Learning with neural networks, especially without a specific framework. By the end of the course, you will be well-versed to tackle and troubleshoot any errors with your Deep Learning models. 
546 |a In English. 
540 |a Public performance rights obtained  |5 CoU  
650 0 |a Debugging in computer science. 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
655 7 |a Instructional films.  |2 lcgft. 
700 1 |a Konczyk, Jakub,  |e author,  |e speaker. 
710 2 |a Packt Publishing,  |e production company. 
776 0 8 |i DVD version:  |z 9781788998192. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://www.aspresolver.com/aspresolver.asp?MARC;4740628  |z Streaming Video (via Alexander Street Press) 
907 |a .b119423534  |b 03-09-23  |c 09-20-21 
998 |a web  |b  - -   |c f  |d g   |e p  |f eng  |g enk  |h 0  |i 1 
956 |a ASP Video 
956 |a ASP: Subscription 
956 |a ASP: Academic Video Online 
999 f f |i aaafd7f5-c6f0-58ae-9c61-49b9e547087f  |s 8580edcf-7284-5442-93a2-a1f9c60a64f9 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |i web  |n 1