Fault Current Control and Protection in a Standalone DC Microgrid Using Adaptive Droop and Current Derivative [electronic resource]
Saved in:
Online Access: |
Full Text (via OSTI) |
---|---|
Corporate Author: | |
Format: | Government Document Electronic eBook |
Language: | English |
Published: |
Washington, D.C. : Oak Ridge, Tenn. :
United States. National Nuclear Security Administration ; Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,
2020.
|
Subjects: |
Abstract: | This report presents a novel fault detection, characterization, and fault current control algorithm for a standalone solar-photovoltaic (PV) based dc microgrids. The protection scheme is based on the current derivative algorithm. The overcurrent and current directional/differential comparison based protection schemes are incorporated for the dc microgrid fault characterization. For a low impedance fault, the fault current is controlled based on the current/voltage thresholds and current direction. Generally, the droop method is used to control the power-sharing between the converters by controlling the reference voltage. In this article, an adaptive droop scheme is also proposed to control the fault current by calculating a virtual resistance R droop , and to control the converter output reference voltage. For a high impedance fault, differential comparison method is used to characterize the fault. These algorithms effectively control the converter pulsewidth and reduce the flow of source current from a particular converter, which helps to increase the fault clearing time. Additionally, a trip signal is sent to the corresponding dc circuit breaker (DCCB), to isolate the faulted converter, feeder or a dc bus. The dc microgrid protection design procedure is detailed, and the performance of the proposed method is verified by simulation analysis. |
---|---|
Item Description: | Published through Scitech Connect. 03/31/2020. "SAND2022-3812J." "Journal ID: ISSN 2168-6777." "Other: 704990." Augustine, Sijo ; Reno, Matthew J. ; Brahma, Sukumar M. ; Lavrova, Olga ; |
Physical Description: | Size: p. 2529-2539 : digital, PDF file. |