MARC

LEADER 00000nam a22000003u 4500
001 b7843678
003 CoU
005 20140812222816.5
006 m o d f
007 cr |||||||||||
008 141106e19790101||| o| f1|||||eng|d
035 |a (TOE)ost5598068 
035 |a (TOE)5598068 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 14  |2 edbsc 
086 0 |a E 1.99:conf-790631--16 
086 0 |a E 1.99:conf-790631--16 
088 |a conf-790631--16 
245 0 0 |a Multiple staging of the cold water in the open cycle OTEC systems  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Department of Energy. ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 1979. 
300 |a Pages: 4 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 01/01/1979. 
500 |a "conf-790631--16" 
500 |a 6. OTEC conference, Washington, DC, USA, 19 Jun 1979. 
500 |a Zener, C.; Fort, T. Jr.; Molini, A. E. 
520 3 |a Using the cooling water of the open cycle OTEC systems in a multiple stage fashion results in its most effective utilization. Such use increases by 2-1/3 times the power production capability per unit mass of cold water, thus reducing the cost of the most expensive single item of an original installation. Later stages could utilize the effluent from previously installed stages. Also, the warmed effluent from the last stage could be utilized to enrich the nutrient value and CO/sub 2/ absorption capacity of the ocean waters near to the surface. A form of the six-tenth factor rule was used to estimate the cost of multiple stage installations using as a basis the cost of the initial unit. Results are presented relating the cost of the initial cold water supply system, number of stages, and power output per unit mass of original cold water at constant cost per unit of power. 
536 |b EG-77-S-02-4459. 
650 7 |a Ocean Thermal Power Plants.  |2 local. 
650 7 |a Circulating Systems.  |2 local. 
650 7 |a Cost.  |2 local. 
650 7 |a Ocean Thermal Energy Conversion.  |2 local. 
650 7 |a Open-Cycle Systems.  |2 local. 
650 7 |a Optimization.  |2 local. 
650 7 |a Pipes.  |2 local. 
650 7 |a Seawater.  |2 local. 
650 7 |a Conversion.  |2 local. 
650 7 |a Energy Conversion.  |2 local. 
650 7 |a Hydrogen Compounds.  |2 local. 
650 7 |a Oxygen Compounds.  |2 local. 
650 7 |a Power Plants.  |2 local. 
650 7 |a Solar Energy Conversion.  |2 local. 
650 7 |a Solar Power Plants.  |2 local. 
650 7 |a Water.  |2 local. 
650 7 |a Solar Energy.  |2 edbsc. 
710 2 |a Carnegie-Mellon University.  |b Department of Chemical Engineering.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/servlets/purl/5598068/  |z Online Access 
907 |a .b78436783  |b 03-08-23  |c 11-07-14 
998 |a web  |b 11-07-14  |c f  |d m   |e p  |f eng  |g    |h 0  |i 1 
956 |a Information bridge 
999 f f |i 84ffd18d-4904-5f63-8714-a4157c063ad9  |s 86c833fe-5cab-53c1-a00e-f8c631c8a0e2 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:conf-790631--16  |h Superintendent of Documents classification  |i web  |n 1