All of statistics : a concise course in statistical inference / Larry Wasserman.

This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wide...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Wasserman, Larry, 1959-
Format: eBook
Language:English
Published: New York : Springer, ©2004.
Series:Springer texts in statistics.
Subjects:

MARC

LEADER 00000cam a2200000Ma 4500
001 b7980542
006 m o d
007 cr |||||||||||
008 030815s2004 nyua ob 001 0 eng d
005 20240418142257.5
020 |a 9780387217369  |q (electronic bk.) 
020 |a 0387217363  |q (electronic bk.) 
020 |a 9781441923226  |q (print) 
020 |a 1441923225  |q (print) 
020 |z 0387402721 
020 |z 9780387402727 
024 7 |a 10.1007/978-0-387-21736-9 
035 |a (OCoLC)spr133158409 
035 |a (OCoLC)133158409 
037 |a spr10.1007/978-0-387-21736-9 
040 |a UAB  |b eng  |e pn  |c UAB  |d BAKER  |d OCLCG  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OCLCF  |d GW5XE  |d OCLCQ  |d COO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA276.12  |b .W37 2003eb 
100 1 |a Wasserman, Larry,  |d 1959- 
245 1 0 |a All of statistics :  |b a concise course in statistical inference /  |c Larry Wasserman. 
260 |a New York :  |b Springer,  |c ©2004. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Springer texts in statistics. 
504 |a Includes bibliographical references (pages 423-430) and index. 
505 0 |a Probability -- Random Variables -- Expectation -- Inequalities -- Convergence of Random Variables -- Models, Statistical Inference and Learning -- Estimating the CDF and Statistical Functionals -- The Bootstrap -- Parametric Inference -- Hypothesis Testing and p-values -- Bayesian Inference -- Statistical Decision Theory -- Linear and Logistic Regression -- Multivariate Models -- Inference about Independence -- Causal Inference -- Directed Graphs and Conditional Independence -- Undirected Graphs -- Loglinear Models -- Nonparametric Curve Estimation -- Smoothing Using Orthogonal Functions -- Classification -- Probability Redux: Stochastic Processes -- Simulation Methods. 
520 |a This book is for people who want to learn probability and statistics quickly. It brings together many of the main ideas in modern statistics in one place. The book is suitable for students and researchers in statistics, computer science, data mining and machine learning. This book covers a much wider range of topics than a typical introductory text on mathematical statistics. It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses. The reader is assumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. The text can be used at the advanced undergraduate and graduate level. Larry Wasserman is Professor of Statistics at Carnegie Mellon University. He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science. His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bioinformatics, and genetics. He is the 1999 winner of the Committee of Presidents of Statistical Societies Presidents' Award and the 2002 winner of the Centre de recherches mathematiques de MontrealStatistical Society of Canada Prize in Statistics. He is Associate Editor of The Journal of the American Statistical Association and The Annals of Statistics. He is a fellow of the American Statistical Association and of the Institute of Mathematical Statistics. 
588 0 |a Print version record. 
650 0 |a Mathematical statistics. 
650 7 |a Mathematical statistics.  |2 fast  |0 (OCoLC)fst01012127. 
776 0 8 |i Print version:  |a Wasserman, Larry, 1959-  |t All of statistics.  |d New York : Springer, ©2004  |w (DLC) 2003062209. 
830 0 |a Springer texts in statistics. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-0-387-21736-9  |z Full Text (via Springer) 
907 |a .b79805425  |b 07-02-19  |c 06-01-15 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g nyu  |h 0  |i 1 
907 |a .b79805425  |b 05-09-17  |c 06-01-15 
915 |a M 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
956 |a Mathematics 
956 |a Springer e-books: Archive 
999 f f |i 51429c99-da98-5d76-941d-48ac2cf832ef  |s b0b52282-0d72-5d54-9f57-751e2a189f68 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA276.12 .W37 2003eb  |h Library of Congress classification  |i Ebooks, Prospector  |n 1