Mathematics of Fuzzy Sets [electronic resource] : Logic, Topology, and Measure Theory / edited by Ulrich Höhle, Stephen Ernest Rodabaugh.

Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Höhle, Ulrich
Other Authors: Rodabaugh, Stephen Ernest
Format: Electronic eBook
Language:English
Published: Boston, MA : Springer US, 1999.
Series:Handbooks of fuzzy sets series ; 3.
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b8008707
006 m o d
007 cr |||||||||||
008 121227s1999 mau o 000 0 eng
005 20241118152702.7
019 |a 934970717  |a 968474809  |a 1113560184 
020 |a 9781461550792  |q (electronic bk.) 
020 |a 1461550793  |q (electronic bk.) 
020 |z 9781461373100 
020 |z 1461373107 
024 7 |a 10.1007/978-1-4615-5079-2  |2 doi 
029 0 |a AU@  |b 000051698962 
029 1 |a NLGGC  |b 401218597 
029 1 |a NZ1  |b 15039311 
029 1 |a NZ1  |b 15332008 
035 |a (OCoLC)spr851819273 
035 |a (OCoLC)851819273  |z (OCoLC)934970717  |z (OCoLC)968474809  |z (OCoLC)1113560184 
037 |a spr978-1-4615-5079-2 
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCO  |d OCLCQ  |d OCLCO  |d GW5XE  |d OCLCQ  |d OCLCF  |d UA@  |d COO  |d OCLCQ  |d EBLCP  |d OCLCQ  |d YDX  |d UAB  |d OCLCQ  |d U3W  |d TKN  |d LEAUB  |d OCLCQ  |d UKBTH  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M  |d OCLCO  |d OCLCQ 
049 |a GWRE 
050 4 |a QA8.9-10.3 
100 1 |a Höhle, Ulrich.  |0 http://id.loc.gov/authorities/names/n85826550  |1 http://isni.org/isni/0000000117703878 
245 1 0 |a Mathematics of Fuzzy Sets  |h [electronic resource] :  |b Logic, Topology, and Measure Theory /  |c edited by Ulrich Höhle, Stephen Ernest Rodabaugh. 
260 |a Boston, MA :  |b Springer US,  |c 1999. 
300 |a 1 online resource (xii, 716 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a The Handbooks of Fuzzy Sets Series,  |x 1388-4352 ;  |v 3 
520 |a Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform for future research. Fourteen chapters are organized into three parts: mathematical logic and foundations (Chapters 1-2), general topology (Chapters 3-10), and measure and probability theory (Chapters 11-14). Chapter 1 deals with non-classical logics and their syntactic and semantic foundations. Chapter 2 details the lattice-theoretic foundations of image and preimage powerset operators. Chapters 3 and 4 lay down the axiomatic and categorical foundations of general topology using lattice-valued mappings as a fundamental tool. Chapter 3 focuses on the fixed-basis case, including a convergence theory demonstrating the utility of the underlying axioms. Chapter 4 focuses on the more general variable-basis case, providing a categorical unification of locales, fixed-basis topological spaces, and variable-basis compactifications. Chapter 5 relates lattice-valued topologies to probabilistic topological spaces and fuzzy neighborhood spaces. Chapter 6 investigates the important role of separation axioms in lattice-valued topology from the perspective of space embedding and mapping extension problems, while Chapter 7 examines separation axioms from the perspective of Stone-Cech-compactification and Stone-representation theorems. Chapters 8 and 9 introduce the most important concepts and properties of uniformities, including the covering and entourage approaches and the basic theory of precompact or complete [0,1]-valued uniform spaces. Chapter 10 sets out the algebraic, topological, and uniform structures of the fundamentally important fuzzy real line and fuzzy unit interval. Chapter 11 lays the foundations of generalized measure theory and representation by Markov kernels. Chapter 12 develops the important theory of conditioning operators with applications to measure-free conditioning. Chapter 13 presents elements of pseudo-analysis with applications to the Hamilton & endash;Jacobi equation and optimization problems. Chapter 14 surveys briefly the fundamentals of fuzzy random variables which are [0,1]-valued interpretations of random sets. 
505 0 |a 1. Many-valued logic and fuzzy set theory -- 2. Powerset operator foundations for poslat fuzzy set theories and topologies -- Introductory notes to Chapter 3 -- 3. Axiomatic foundations of fixed-basis fuzzy topology -- 4. Categorical foundations of variable-basis fuzzy topology -- 5. Characterization of L-topologies by L-valued neighborhoods -- 6. Separation axioms: Extension of mappings and embedding of spaces -- 7. Separation axioms: Representation theorems, compactness, and compactifications -- 8. Uniform spaces -- 9. Extensions of uniform space notions -- 10. Fuzzy real lines and dual real lines as poslat topological, uniform, and metric ordered semirings with unity -- 11. Fundamentals of generalized measure theory -- 12. On conditioning operators -- 13. Applications of decomposable measures -- 14. Fuzzy random variables revisited. 
546 |a English. 
650 0 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139 
650 0 |a Logic, Symbolic and mathematical.  |0 http://id.loc.gov/authorities/subjects/sh85078115 
650 0 |a Mathematical optimization.  |0 http://id.loc.gov/authorities/subjects/sh85082127 
650 0 |a Operations research.  |0 http://id.loc.gov/authorities/subjects/sh85095020 
650 7 |a Logic, Symbolic and mathematical.  |2 fast 
650 7 |a Mathematical optimization.  |2 fast 
650 7 |a Mathematics.  |2 fast 
650 7 |a Operations research.  |2 fast 
700 1 |a Rodabaugh, Stephen Ernest.  |0 http://id.loc.gov/authorities/names/n91098411  |1 http://isni.org/isni/0000000033544347 
776 0 8 |i Print version:  |z 9781461373100 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-1-4615-5079-2  |z Full Text (via Springer) 
830 0 |a Handbooks of fuzzy sets series ;  |v 3.  |0 http://id.loc.gov/authorities/names/n98025802 
915 |a - 
936 |a BATCHLOAD 
944 |a MARS - RDA ENRICHED 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
956 |a Quesnalia testing - EUI 
994 |a 92  |b COD 
998 |b WorldCat record encoding level change 
999 f f |i 7634b6be-d9bf-57fd-89d6-b33cec4d7c1e  |s 90149c90-7eec-5a63-b4c0-08176b58f17d 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA8.9-10.3  |h Library of Congress classification  |i Ebooks, Prospector  |n 1