Time series analysis / Wilfredo Palma, Ponticia Universidad Católica de Chile.

A modern and accessible guide to the analysis of introductory time series data Featuring an organized and self-contained guide, Time Series Analysis provides a broad introduction to the most fundamental methodologies and techniques of time series analysis. The book focuses on the treatment of univar...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Palma, Wilfredo, 1963-
Format: eBook
Language:English
Published: Hoboken, NJ : John Wiley & Sons, [2016]
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b8589658
006 m o d
007 cr |||||||||||
008 150623s2016 nju ob 001 0 eng
005 20240604165531.5
010 |a  2015025132 
019 |a 1055408092  |a 1066464651  |a 1081291332  |a 1101726849  |a 1148068416 
020 |a 9781118634233  |q (pdf) 
020 |a 1118634233  |q (pdf) 
020 |a 9781118634349  |q (epub) 
020 |a 1118634349  |q (epub) 
020 |a 1118634322 
020 |a 9781118634325 
020 |z 9781118634325  |q (cloth) 
029 1 |a AU@  |b 000054990355 
029 1 |a AU@  |b 000060919193 
035 |a (OCoLC)ebc911618243 
035 |a (OCoLC)911618243  |z (OCoLC)1055408092  |z (OCoLC)1066464651  |z (OCoLC)1081291332  |z (OCoLC)1101726849  |z (OCoLC)1148068416 
037 |a ebc4517503 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCF  |d N$T  |d IDEBK  |d YDXCP  |d CDX  |d EBLCP  |d IUL  |d RECBK  |d IDB  |d CNCGM  |d Z5A  |d NRC  |d OCLCQ  |d CCO  |d K6U  |d LOA  |d COCUF  |d MERUC  |d ZCU  |d ICG  |d JG0  |d WRM  |d STF  |d OCLCO  |d OCLCQ  |d VT2  |d WYU  |d LVT  |d TKN  |d DKC  |d OCLCQ  |d UX1  |d UKAHL  |d DLC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
042 |a pcc 
049 |a GWRE 
050 0 0 |a QA280 
100 1 |a Palma, Wilfredo,  |d 1963-  |0 http://id.loc.gov/authorities/names/n2006088620  |1 http://isni.org/isni/0000000114806871 
245 1 0 |a Time series analysis /  |c Wilfredo Palma, Ponticia Universidad Católica de Chile. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons,  |c [2016] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record and CIP data provided by publisher. 
520 |a A modern and accessible guide to the analysis of introductory time series data Featuring an organized and self-contained guide, Time Series Analysis provides a broad introduction to the most fundamental methodologies and techniques of time series analysis. The book focuses on the treatment of univariate time series by illustrating a number of well-known models such as ARMA and ARIMA. Providing contemporary coverage, the book features several useful and newlydeveloped techniques such as weak and strong dependence, Bayesian methods, non-Gaussian data, local stationarity, missing values and outliers, and threshold models. Time Series Analysis includes practical applications of time series methods throughout, as well as: -Real-world examples and exercise sets that allow readers to practice the presented methods and techniques -Numerous detailed analyses of computational aspects related to the implementation of methodologies including algorithm efficiency, arithmetic complexity, and process time -End-of-chapter proposed problems and bibliographical notes to deepen readers' knowledge of the presented material -Appendices that contain details on fundamental concepts and select solutions of the problems implemented throughout -A companion website with additional data fi les and computer codes Time Series Analysis is an excellent textbook for undergraduate and beginning graduate-level courses in time series as well as a supplement for students in advanced statistics, mathematics, economics, finance, engineering, and physics. The book is also a useful reference for researchers and practitioners in time series analysis, econometrics, and finance. Wilfredo Palma, PhD, is Professor of Statistics in the Department of Statistics at Pontificia Universidad CatOlica de Chile. He has published several refereed articles and has received over a dozen academic honors and awards. His research interests include time series analysis, prediction theory, state space systems, linear models, and econometrics. He is the author of Long-Memory Time Series: Theory and Methods, also published by Wiley. 
505 0 |a Title Page -- Copyright -- Table of Contents -- PREFACE -- ACKNOWLEDGMENTS -- ACRONYMS -- ABOUT THE COMPANION WEBSITE -- CHAPTER 1: INTRODUCTION -- 1.1 TIME SERIES DATA -- 1.2 RANDOM VARIABLES AND STATISTICAL MODELING -- 1.3 DISCRETE-TIME MODELS -- 1.4 SERIAL DEPENDENCE -- 1.5 NONSTATIONARITY -- 1.6 WHITENESS TESTING -- 1.7 PARAMETRIC AND NONPARAMETRIC MODELING -- 1.8 FORECASTING -- 1.9 TIME SERIES MODELING -- 1.10 BIBLIOGRAPHIC NOTES -- Problems -- CHAPTER 2: LINEAR PROCESSES -- 2.1 DEFINITION -- 2.2 STATIONARITY -- 2.3 INVERTIBILITY -- 2.4 CAUSALITY -- 2.5 REPRESENTATIONS OF LINEAR PROCESSES -- 2.6 WEAK AND STRONG DEPENDENCE -- 2.7 ARMA MODELS -- 2.8 AUTOCOVARIANCE FUNCTION -- 2.9 ACF AND PARTIAL ACF FUNCTIONS -- 2.10 ARFIMA PROCESSES -- 2.11 FRACTIONAL GAUSSIAN NOISE -- 2.12 BIBLIOGRAPHIC NOTES -- Problems -- CHAPTER 3: STATE SPACE MODELS -- 3.1 INTRODUCTION -- 3.2 LINEAR DYNAMICAL SYSTEMS -- 3.3 STATE SPACE MODELING OF LINEAR PROCESSES -- 3.4 STATE ESTIMATION -- 3.5 EXOGENOUS VARIABLES -- 3.6 BIBLIOGRAPHIC NOTES -- Problems -- CHAPTER 4: SPECTRAL ANALYSIS -- 4.1 TIME AND FREQUENCY DOMAINS -- 4.2 LINEAR FILTERS -- 4.3 SPECTRAL DENSITY -- 4.4 PERIODOGRAM -- 4.5 SMOOTHED PERIODOGRAM -- 4.6 EXAMPLES -- 4.7 WAVELETS -- 4.8 SPECTRAL REPRESENTATION -- 4.9 TIME-VARYING SPECTRUM -- 4.10 BIBLIOGRAPHIC NOTES -- Problems -- CHAPTER 5: ESTIMATION METHODS -- 5.1 MODEL BUILDING -- 5.2 PARSIMONY -- 5.3 AKAIKE AND SCHWARTZ INFORMATION CRITERIA -- 5.4 ESTIMATION OF THE MEAN -- 5.5 ESTIMATION OF AUTOCOVARIANCES -- 5.6 MOMENT ESTIMATION -- 5.7 MAXIMUM-LIKELIHOOD ESTIMATION -- 5.8 WHITTLE ESTIMATION -- 5.9 STATE SPACE ESTIMATION -- 5.10 ESTIMATION OF LONG-MEMORY PROCESSES -- 5.11 NUMERICAL EXPERIMENTS -- 5.12 BAYESIAN ESTIMATION -- 5.13 STATISTICAL INFERENCE -- 5.14 ILLUSTRATIONS -- 5.15 BIBLIOGRAPHIC NOTES -- Problems -- CHAPTER 6: NONLINEAR TIME SERIES. 
505 8 |a 6.1 INTRODUCTION -- 6.2 TESTING FOR LINEARITY -- 6.3 HETEROSKEDASTIC DATA -- 6.4 ARCH MODELS -- 6.5 GARCH MODELS -- 6.6 ARFIMA-GARCH MODELS -- 6.7 ARCH(∞) MODELS -- 6.8 APARCH MODELS -- 6.9 STOCHASTIC VOLATILITY -- 6.10 NUMERICAL EXPERIMENTS -- 6.11 DATA APPLICATIONS -- 6.12 VALUE AT RISK -- 6.13 AUTOCORRELATION OF SQUARES -- 6.14 THRESHOLD AUTOREGRESSIVE MODELS -- 6.15 BIBLIOGRAPHIC NOTES -- Problems -- CHAPTER 7: PREDICTION -- 7.1 OPTIMAL PREDICTION -- 7.2 ONE-STEP AHEAD PREDICTORS -- 7.3 MULTISTEP AHEAD PREDICTORS -- 7.4 HETEROSKEDASTIC MODELS -- 7.5 PREDICTION BANDS -- 7.6 DATA APPLICATION -- 7.7 BIBLIOGRAPHIC NOTES -- Problems -- CHAPTER 8: NONSTATIONARY PROCESSES -- 8.1 INTRODUCTION -- 8.2 UNIT ROOT TESTING -- 8.3 ARIMA PROCESSES -- 8.4 LOCALLY STATIONARY PROCESSES -- 8.5 STRUCTURAL BREAKS -- 8.6 BIBLIOGRAPHIC NOTES -- Problems -- CHAPTER 9: SEASONALITY -- 9.1 SARIMA MODELS -- 9.2 SARFIMA MODELS -- 9.3 GARMA MODELS -- 9.4 CALCULATION OF THE ASYMPTOTIC VARIANCE -- 9.5 AUTOCOVARIANCE FUNCTION -- 9.6 MONTE CARLO STUDIES -- 9.7 ILLUSTRATION -- 9.8 BIBLIOGRAPHIC NOTES -- Problems -- CHAPTER 10: TIME SERIES REGRESSION -- 10.1 MOTIVATION -- 10.2 DEFINITIONS -- 10.3 PROPERTIES OF THE LSE -- 10.4 PROPERTIES OF THE BLUE -- 10.5 ESTIMATION OF THE MEAN -- 10.6 POLYNOMIAL TREND -- 10.7 HARMONIC REGRESSION -- 10.8 ILLUSTRATION: AIR POLLUTION DATA -- 10.9 BIBLIOGRAPHIC NOTES -- Problems -- CHAPTER 11: MISSING VALUES AND OUTLIERS -- 11.1 INTRODUCTION -- 11.2 LIKELIHOOD FUNCTION WITH MISSING VALUES -- 11.3 EFFECTS OF MISSING VALUES ON ML ESTIMATES -- 11.4 EFFECTS OF MISSING VALUES ON PREDICTION -- 11.5 INTERPOLATION OF MISSING DATA -- 11.6 SPECTRAL ESTIMATION WITH MISSING VALUES -- 11.7 OUTLIERS AND INTERVENTION ANALYSIS -- 11.8 BIBLIOGRAPHIC NOTES -- Problems -- CHAPTER 12: NON-GAUSSIAN TIME SERIES -- 12.1 DATA DRIVEN MODELS -- 12.2 PARAMETER DRIVEN MODELS. 
505 8 |a 12.3 ESTIMATION -- 12.4 DATA ILLUSTRATIONS -- 12.5 ZERO-INFLATED MODELS -- 12.6 BIBLIOGRAPHIC NOTES -- Problems -- APPENDIX A: COMPLEMENTS -- A.1 PROJECTION THEOREM -- A.2 WOLD DECOMPOSITION -- A.3 BIBLIOGRAPHIC NOTES -- APPENDIX B: SOLUTIONS TO SELECTED PROBLEMS -- APPENDIX C: DATA AND CODES -- REFERENCES -- TOPIC INDEX -- AUTHOR INDEX -- End User License Agreement. 
650 0 |a Time-series analysis.  |0 http://id.loc.gov/authorities/subjects/sh85135430 
650 7 |a Time-series analysis.  |2 fast 
758 |i has work:  |a Time series analysis (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGkQt4TCDPyxpydHp7RrpX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Palma, Wilfredo, 1963-  |t Time series analysis.  |d Hoboken : John Wiley & Sons, [2016]  |z 9781118634325  |w (DLC) 2015024282 
856 4 0 |u http://ebookcentral.proquest.com/lib/ucb/detail.action?docID=4517503  |z Full Text (via ProQuest) 
915 |a - 
944 |a MARS - RDA ENRICHED 
948 |a May 2024 ebook central cleanup, msw. 
950 |a CBma9 
956 |a Ebook Central 
956 |b Ebook Central Perpetual Titles 
994 |a 92  |b COD 
998 |b Subsequent record output 
999 f f |i cf0a1d50-ee17-5814-8ca6-b1011bcd5ab7  |s 79286053-7f96-5d7d-ac70-a3739b70cf72 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA280 .P354 2016eb  |h Library of Congress classification  |i web  |n 1